算法的重要性,我就不多說了吧,想去大廠,就必須要經過基礎知識和業務邏輯面試+算法面試。所以,為了提高大家的算法能力,這個公眾號後續每天帶大家做一道算法題,題目就從LeetCode上面選 !
今天和大家聊的問題叫做 編輯距離,我們先來看題面:
https://leetcode-cn.com/problems/edit-distance
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
Insert a character
Delete a character
Replace a character
題意給你兩個單詞 word1 和 word2,請你計算出將 word1 轉換成 word2 所使用的最少操作數 。插入一個字符
刪除一個字符
替換一個字符
示例 1:
輸入:word1 = "horse", word2 = "ros"
輸出:3
解釋:
horse -> rorse (將 'h' 替換為 'r')
rorse -> rose (刪除 'r')
rose -> ros (刪除 'e')
示例 2:
輸入:word1 = "intention", word2 = "execution"
輸出:5
解釋:
intention -> inention (刪除 't')
inention -> enention (將 'i' 替換為 'e')
enention -> exention (將 'n' 替換為 'x')
exention -> exection (將 'n' 替換為 'c')
exection -> execution (插入 'u')
使用dp[i][j]用來表示字符串1的0~i-1、字符串2的0~j-1的最小編輯距離;
我們可以知道邊界情況:
dp[i][0] = i、dp[0][j]=j;
同時對於兩個字符串的子串,都能分為最後一個字符相等或者不等的情況:
如果words[i-1] == words[j-1]:
dp[i][j] = dp[i-1][j-1];
也就是說當前的編輯距離和位置i和j的字符無關;
如果words[i-1] != words[j-1]:則存在三種可能的操作:
向word1插入:
dp[i][j] = dp[i][j-1] + 1;
從word1刪除:
dp[i][j] = dp[i-1][j] + 1;
替換word1元素:
dp[i][j] = dp[i-1][j-1] + 1;
class Solution {
public:
int minDistance(string word1, string word2) {
int rows = word1.length();
int cols = word2.length();
vector<vector<int> > dp(rows+1, vector<int>(cols+1, 0));
for(int i=1; i<=rows; ++i)
dp[i][0] = i;
for(int j=1; j<=cols; ++j)
dp[0][j] = j;
for(int i=1; i<=rows; ++i){
for(int j=1; j<=cols; ++j){
if(word1[i-1] == word2[j-1])
dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1;
}
}
return dp[rows][cols];
}
};