初中數學怎麼才能學好?重難點知識匯總奉上

2020-12-15 愛數學懂教育

初中數學到底怎麼才能學好?這是很多同學都糾結的問題,今天跟大家分享的就是一位老師寫的初中數學重難點以及各年級學習數學要注意哪些「坑」,本文建議收藏,記得分享給需要的同學!

一、構建完整的知識框架

1.構建完整的知識框架是我們解決問題的基礎,想要學好數學必須重視基礎概念,必須加深對知識點的理解,然後會運用知識點解決問題,遇到問題自己學會反思及多維度的思考,最後形成自己的思路和方法。但有很多初中學生不重視書本的概念,對某些概念一知半解,對知識點沒有吃透,知識體系不完整,就會出現成績飄忽不定的現象。

2.正確理解和掌握數學的一些基本概念、法則、公式、定理,把握他們之間的內在聯繫。由於數學是一門知識的連貫性和邏輯性都很強的學科,正確掌握學過的每一個概念、法則、公式、定理可以為以後的學習打下良好的基礎,如果在學習某一內容或解某一題時碰到了困難,那麼很有可能就是因為與其有關的、以前的一些基本知識沒有掌握好所造成的,因此要經常查缺補漏,找到問題並及時解決之,努力做到發現一個問題及時解決一個問題。只有基礎紮實,解決問題才能得心應手,成績才會提高。

二、初中數學中考知識重難點分析

1.函數(一次函數、反比例函數、二次函數)中考佔總分的15%左右。

特別是二次函數是中考的重點,也是中考的難點,在填空、選擇、解答題中均會出現,且知識點多,題型多變。

而且一道解答題一般會在試卷最後兩題中出現,一般二次函數的應用和二次函數的圖像、性質及三角形、四邊形綜合題難度較大。有一定難度。

如果在這一環節掌握不好,將會直接影響代數的基礎,會對中考的分數會造成很大的影響。

2.整式、分式、二次根式的化簡運算

整式的運算、因式分解、二次根式、科學計數法及分式化簡等都是初中學習的重點,它貫穿於整個初中數學的知識,是我們進行數學運算的基礎,其中因式分解及理解因式分解和整式乘法運算的關係、分式的運算是難點。

中考一般以選擇、填空形式出現,但卻是解答題完整解答的基礎。運算能力的熟練程度和答題的正確率有直接的關係,掌握不好,答題正確率就不會很高,進而後面的的方程、不等式、函數也無法學好。

3.應用題,中考中佔總分的30%左右

包括方程(組)應用,一元一次不等式(組)應用,函數應用,解三角形應用,概率與統計應用幾種題型。

一般會出現二至三道解答題(30分左右)及2—3道選擇、填空題(10分—15分),佔中考總分的30%左右。

現在中考對數學實際應用的考察會越來越多,數學與生活聯繫越來越緊密,應用題要求學生的理解辨別能力很強,能從問題中讀出必要的數學信息,並從數學的角度尋求解決問題的策略和方法。方程思想、函數思想、數形結合思想也是中學階段一種很重要的數學思想、是解決很多問題的工具。

4.三角形(全等、相似、角平分線、中垂線、高線、解直角三角形)、四邊形(平行四邊形、矩形、菱形、正方形),中考中佔總分25%左右。

三角形是初中幾何圖形中內容最多的一塊知識,也是學好平面幾何的必要基礎,貫穿初二到到初三的幾何知識,其中的幾何證明題及線段長度和角度的計算對很多學生是難點。

只有學好了三角形,後面的四邊形乃至圓的證明就容易理解掌握了,反之,後面的一切幾何證明更將無從下手,沒有清晰的思路。

其中解三角形在初三下冊學習,是以直角三角形為基礎的,在中考中會以船的觸礁、樓高、影子問題出現一道大題。因此在初中數學學習中也是一個重點。

四邊形在初二進行學習的,其中特殊四邊形的性質及判定定理很多,容易混淆,深刻理解這些性質和判定、理清它們之間的聯繫是解決證明和計算的基礎,四邊形中題型多變,計算、證明都有一定難度。經常在中考選擇題、填空題及解答題的壓軸題(最後一題)中出現,對學生綜合運用知識的能力要求較高。

5.圓,中考中佔總分的10%左右

包括圓的基本性質,點、直線與圓位置關係,圓心角與圓周角,切線的性質和判定,扇形弧長及面積,這章節知識是在初三學習的。

其中切線的性質和判定、圓中的基本性質的理解和運用、直線與圓的位置關係、圓中的一些線段長度及角度的計算是重點也是難點。

三、各年級教材知識重難點分析

七年級教材重難點分析

七上

教學內容

重點

難點

易錯點

有理數

有理數的分類;數軸、相反數、絕對值及有理數的運算。

關於絕對值的化簡;有理數的混合運算;符號情況;規律探索題

絕對值的化簡;運算時符號的錯誤;規律探索無從下手

整式的加減

單項式、多項式、整式的概念;合併同類項;

求代數式的值;整式的加減運算、求值;規律探索

單項式及多項式中的很多概念性的錯誤;合併時符號錯誤

一元一次方程

等式的基本性質及一元一次方程的解法;實際應用

關於一元一次方程的應用題。

去分母、去括號過程中容易出錯

幾何圖形初步

線段、直線、射線的認識;線段、角的度量與比較;餘角、補角

線段、直線、射線的區別;角度的大小比較運算;時鐘問題

線段、直線、射線的認識;

七下

教學內容

重點

難點

易錯點

相交線與平行線

理解「三線八角」;平行線的性質和判定;

準確理解判斷兩條直線平行的條件和特徵;理解性質和判定的關係

不能正確的理解性質和條件的關係

實數

平方根、立方根的概念、實數的定義;區分有理數和無理數

理解無理數是無限不循環小數;實數運算的某些技巧掌握

無理數的表現形式;理解平方根有兩個

平面直角坐標系

平面直角坐標系的概念;點的坐標表示;點的坐標變換

點的坐標變換(平移、對稱)

坐標的表示;坐標變換

二元一次方程組

用代入法,加減法解二元一次方程組

二元一次方程組的應用題;二元一次方程組和一次函數圖像的關係

二元一次方程組的解法及應用題

不等式與不等式組

不等式的基本性質;一元一次不等式(組)的解及解法法

解一元一次不等式組取解集;一元一次不等式(組)處理應用問題;求字母取值範圍的問題

一元一次不等式組解集的確定;解集端點值的包含問題

數據的收集、整理和描述

了解隨機抽樣、個體、總體、樣本、樣本容量、頻率、頻數等概念

理解頻數、頻率的概念,

樣本、樣本容量的區分;全面調查和抽樣調查的區分

八年級教材重難點分析

八上

教學內容

重點

難點

易錯點

十一

三角形

三角形的邊、角的關係;三角形的「三線」;重心的概念及性質

三角形三邊的關係;三角形的的「三線」

三角形的三線的區分;多邊形的外角

十二

全等三角形

三角形全等的判定與探索;利用三角形全等解決實際問題。

靈活運用三角形全等的各種方法證明三角形全等;利用全等三角形的性質證明邊、角相等

準確把握三角形全等的條件,以避免條件不完全的判定、及錯判,如錯用邊邊角

十三

軸對稱

軸對稱的概念和性質;中垂線的性質運用;等腰三角形的的性質和判定

中垂線性質的運用;等腰三角形的性質的運用;利用軸對稱解決最短路徑問題

對稱軸是一條直線而非線段;最短路徑問題

十四

整式的乘除與因式分解

冪的運算法則;乘法公式;因式分解的方法

乘法公式的綜合考察;準確理解因式分解和整式乘法運算的關係

完全平方公式的運用;因式分解不徹底

十五

分式

分式的意義及用分式的基本性質解題;分式的化簡運算;分式方程的解法和應用

如何確定最簡公分母;分式方程的一般解法;利用分式方程解決應用題

解分式方程時必須檢驗;通分與解方程時去分母的區別

八下

教學內容

重點

難點

易錯點

十六

二次根式

二次根式的性質;二次根式的化簡運算;二次根式的幾何應用

最簡二次根式的理解;二次根式的化簡及運算技巧;

二次根式的化簡時沒有到最簡;運算結果沒有寫最簡

十七

勾股定理

勾股定理的概念及應用;勾股定理及其逆定理的關係;

理解定理和逆定理的概念;勾股定理的應用,如最短路徑問題

沒理清勾股定理及其逆定理的關係

十八

平行四邊形

平行四邊形及特殊的平行四邊形的性質和判定;正確理解他們的關係;三角形中位線定理

平行四邊形及特殊的平行四邊形的性質和判定的綜合運用;證明和線段、角度的計算;

平行四邊形的判定;特別平行四邊形的判定。

十九

一次函數

一次函數解析式及其圖象;一次函數的概念和性質;待定係數法。

對函數的理解;一次函數圖像的運用;數形結合思想的考察

一次函數圖像與方程、方程組、不等式的關係;

二十

數據的分析

理解頻平均數、中位數、眾數的概念;方差、標準差的計算

理解頻平均數、中位數、眾數的概念;方差、標準差的計算。

方差、標準差的計算。

九年級教材重難點分析

九上

教學內容

重點

難點

易錯點

二十一

一元二次方程

用配方法、公式法、因式分解法解一元二次方程;一元二次方程的應用

用配方法解一元二次方程;實際問題中的一元二次方程

利用因式分解法及公式法解方程

二十二

二次函數

二次函數的解析式、性質和圖像;二次函數解決應用題

靈活運用二次函數的圖像和性質解決問題;二次函數的實際應用(最值問題)

二次函數圖形問題;最值問題

二十三

旋轉

理解中心對稱和中心對稱圖形的概念

坐標系中點的中心對稱變換

旋轉作圖

二十四

圓的有關性質(垂徑定理與其推論,圓周角與圓心角的關係);直線與圓的位置關係;扇形弧長、圓錐面積的計算

圓的基本性質的理解;直線與圓相切的判定方法;圓心角與弧、弦、圓周角之間的關係

切線的概念理解;圓錐的側面積,弧長的計算

二十五

概率初步

概率的定義;用列表法和畫樹狀圖法計算簡單事件概率;

理解用事件發生的頻率來估計概率的概念;用列表法和畫樹狀圖法計算簡單事件概率;

頻率是在一個樣本中出現的,而概率是整個事件來說的。

九下

教學內容

重點

難點

易錯點

二十六

反比例函數

反比例函數的表達式;反比例函數的圖象與性質;雙曲線和直線相交的問題

反比例函數的應用;猜想證明與拓廣;雙曲線與直線相交的綜合問題;有關三角形的面積問題

注意反比例函數的圖象與X、Y軸無交點,且越來越逼近

二十七

相似

相似三角形的判定和性質的應用

理解相似和位似的關係;相似三角形性質的應用(如面積比等於相似比的平方);利用相似解決實際問題

比例尺為相似比;相似比的平方等於面積比

二十八

銳角三角函數

對三角函數的準確理解;用三角函數和勾股定理解決實際應用問題

用三角函數聯繫實際解決實際問題;用邊角關係處理實際生活中的問題

特殊角三角函數值記錯;

二十九

投影與視圖

會畫、看某個物體的三視圖;由三視圖描述立體圖形的形狀;

理解平行投影與中心投影的區別;由三視圖描述立體圖形的形狀;

三視圖的理解;中心投影與平行投影的區別

備註:教材版本為人教版,黑體加粗標題為各年級重難點章節

四、各年級的常見現象

初一學不好數學

許多小學數學學科成績很好的學生到了初中數學成績會出現下滑,成績不穩定等現象。初中數學與小學數學相比,知識的深度、廣度、能力要求都有不小的提高。

對概念、法則、公式、定理知識一知半解,沒有吃透課本內容。課後又不能及時鞏固、總結、尋找知識間的聯繫,只是趕作業、套題型,遇到難題缺乏思考,學習方法的缺乏或不得當嚴重製約學生的有效思維,久而久之容易形成思維惰性,學不好數學。

以上這些問題如果在初一階段不能很好的解決,在初二的兩極分化階段,同學們可能就會出現成績的滑坡。相反,如果能夠打好初一數學基礎,初二的學習只會是更上一層樓!

策略:

1.狠抓基礎,循序漸進。立足課本,把課本知識點吃透,輔以基礎知識、基本方法的訓練,先以基礎題為主,培養運算能力,提升自信心。等基礎知識熟悉了,再逐漸加深難度,能舉一反三,形成自己的思維。能靈活運用知識點。

2.培養良好的學習習慣。及時預習書本知識,然後帶著問題去聽課,提高課堂效率。

總結相似的題型,收集自己的典型錯題和不會做的題目。就不懂得問題,積極討論、請教老師。自己制定每日學習計劃,形成習慣。

3.提高作業質量和效率。每天作業是對當天所學內容的鞏固,如果能高質量的完成當天的作業,就能把當天所學的知識點消化吸收,遺留的問題就少,進而學習效率就高。

初二數學成績下滑

初中數學是一個整體。初二的難點多,初三的考點多。相對而言,初一數學知識點雖然很多,但都比較基礎,中考多以基礎題為主,要求不高。

初二是初中數學學習的一個拐點,坡度突然增加,知識點上的增多和難度的增加,在學習方法上學生是很容易適應的。特別是幾何內容的增加,它的研究對象從「數」到「形」發生變化,方法也從「運算」到「推理」發生變化,學生的分析能力和表達能力跟不上就很難從圖形中找到關係,推理論證困難學科(物理)也相應增加,學業加重,精力分散,有些學生有些力不從心,缺乏毅力的,就會慢慢掉隊。

策略:

1.學會給自己明確目標,以增強學習的目的性、主動性。

2.從基礎知識入手,用簡單、中等的題來訓練自己的解題思路,思考「憑什麼」從第一步走到第二步,它們之間的關聯性、邏輯性是怎樣的?從而真正形成自己的做題思維。

3.堅持養成總結題型、錯題、典型題的習慣,常堅持3—4周後,就能養成習慣。

4.過好幾何入門關——識圖、書寫、推理。書寫是幾何入門的難點,有條理的書寫時培養邏輯推理能力的保證。應根據題目的要求,步步有據,句句有理,由條件推理得到結論。對書本上的定義、性質定理、判定定理要非常熟悉。

5.進行知識歸類,如將判定方法、定理歸類整合,使所學知識系統化。

初三基礎不紮實,力不從心

進入初三以後,學生的學習到了一個新的階段,為了總複習能有更多的時間,各科上課節奏開始加快,學業任務相應加重,基礎不紮實的學生就會跟不上,嚴重時自信心會嚴重受挫,感覺力不從心。

平時做試卷審題不嚴,看題不清,能做對的題目也沒拿到分。小錯不斷,沒有養成積累錯題的習慣。遇到綜合性問題時,缺乏解題思路和方法。遇到難題,就自動放棄了。長時間持續下去,喪失自信心,成績也會下降。

策略:

1.第一步要增強自己的自信心。從時間、中考試卷難度、現階段的情況、預期目標、成功提高成績學生案例等方面分析,增強學習動力。

2.狠抓基礎,循序漸進。利用上初三前的暑假把初一、初二年級的知識漏洞通過查、學、練、測的循環模式補起來,形成完整的知識框架,在繼續學習新知識時能跟上老師節奏,自然會輕鬆很多。

3.在學習的過程中,培養預習、帶著問題上課、複習、積累、總結的習慣,從「要學」變成「會學」,最後會「自學」。不僅對現在很重要,對以後高中的學習也有很大幫助。

4.基礎紮實之後,可以逐漸增加難度,做一些中等難度的題目,也不能盲目的只顧做題,要注重思維、思考問題的能力,解題的方法、技巧的訓練。

5.突出重點,突破難點。認真分析按照中考考綱及近幾年中考數學試卷命題的變化規律,對重點考查內容進行分類訓練,對難點進行個個擊破。

6.熟悉並運用常用的數學思想,如方程思想、整體思想、化歸思想、函數思想、數形結合思想、分類討論思想等。

7.中考基礎題真題演練。要求達到自己理想的正確率,也可以全面考察知識漏洞情況,可以再做複習。

8.中考壓軸題突破。縱觀數學中考命題規律,壓軸題主要出現在函數和三角形或四邊形或圓部分的動態問題或分類討論的內容。對壓軸題進行分類剖析,形成解題思路和技巧。

—END—

版權聲明

1、本文來源於網絡,文章內容僅代表作者本人觀點.

2、版權歸相關權利人所有,尊重知識與勞動,轉載請保留版權資訊。如存在不當使用的情況,請隨時與我們聯繫刪除

相關焦點

  • 初中數學:初中三年各單元知識點匯總,重難點已做好標記,收藏!
    對於初中階段數學的學習,很多同學對於課本知識的內容框架實際上是陌生的,只是跟著老師步驟去學習。這就是為什麼很多學生多數學的整體把握不到位,導致知識的關聯性較差,常常在遇到綜合性的大題式總是束手無策,不知道怎麼辦才好。
  • 小學六年級語數英重難點匯總
    小學六年級語數英重難點匯總 來源:鄭州家長幫論壇      2016-10-10 18:37:12   >六年級數學重難點匯總 六年級上冊 該知識點與其他年級知識點的分析
  • 初中數學:二次函數知識點大匯總,超詳細!數學老師備課都用它!
    初中數學:二次函數知識點大匯總,超詳細,數學老師備課都用它,家有初中生建議收藏列印!二次函數在初中數學的學習中有著舉足輕重的地位,更是教學的重點和難點。函數知識不僅是初中代數的延伸,更是為高中那個學習一元二次方程不等式和圓錐曲線奠定基礎,而且在歷年的中考當中,二次函數都是必考題型,往往壓軸題的形式難倒一學生。二次函數的圖像和性質體現了數與形結合的數學思想,在培養學生基本數學思想上有著非常重要的作用。
  • 初中數學各年級教材重難點整理,這幾張知識點圖你最好提前熟記
    我們說學習一定要有目標性,知道重難點知識,才能在今後的學習中更好地做到遊刃有餘,那麼初中階段又有哪些知識點是比較重要的,值得我們認真聽講的,今天為大家整理一些教材上出現的重難點知識,方便同學們對照學習一,七年級
  • 初中生物:兩年四本書的知識重難點匯總,建議初中生多學一學!
    初中生物:兩年四本書的知識重難點匯總,建議多學一學!生物的知識點是需要鞏固的,要不然在考試時是特別容易失分的科目。因為它的知識點,包括動物身體的結構,還有生物圈,還有我們人體的結構等知識,即使我們生活中能夠接觸的,但是也是容易失分的科目。生活中接觸的知識與我們的生物大部分一致,但生活中的不全面,所以很多考生會走入這種坑中,只有做好知識點鞏固,才能全力以赴的應對會考。
  • 初中數學太難了,怎樣學好初中數學呢?
    初中數學知識點較多,覆蓋內容廣,題型靈活多變,所以很多同學覺得初中數學學習起來很有難度,其實,只要掌握了正確的學習方法,初中數學還是不難學的。那麼,怎樣才能學好初中數學呢?第一,培養學習數學的興趣。興趣是學習最好的老師,培養學習數學的興趣,能夠提高學習數學的效率。數學雖然是一門枯燥的學科, 但是當你每解出一道題時,就會有成就感,就如同商人做買賣賺到了錢一樣,是令人高興的,有時甚至會高興得手舞足蹈。當然,要培養學習的興趣也不簡單,首先你要喜歡它,慢慢地挖掘它,當你挖掘到好方法時,你就會愛上它,也就會對它產生濃厚的興趣了。
  • 初中數學「二次函數」最全知識點匯總!
    今天,給大家整理的是初中數學「二次函數」最全知識點匯總,全文共分為8個部分:知識點總結、學習口訣、易錯分析巧、選解析式、動態最值專題、解題技巧、變式13解、題型歸類,基本囊括了初中數學「二次函數」全部的考點、重難點,強烈推薦家長轉給孩子!
  • 四年級上冊數學:重難點應用題匯總(附答案),列印練熟,不下90
    四年級上冊數學:重難點應用題匯總(附答案),列印練熟,不下90!小學數學的學習是孩子們學好數學的關鍵時期,對於許多孩子而言,學好數學的關鍵就在於找到一個學習數學的興趣,從而找到一個合適的學習方法。數學作為一門邏輯性和思維能力較強的學科,從小我們就要培養孩子的一個思考能力,從而調動孩子的學習積極性,讓孩子更好地去學習它。數學學習的重點就是對基礎知識的掌握和學習,學習數學的標準就是能夠對課本上的基礎知識靈活掌握並學以致用。通過這個過程,不斷地化新為舊,從橫交錯,把所學的知識都深刻理解,融匯貫通,最終形成自己的知識網絡。
  • 初中數學重點公式最全整理,給孩子列印背熟,成績直上140分!
    30年班主任推薦:初中數學公式大全,匯總3年重點,務必收藏!今天我們來跟同學們談一談初中數學,就近幾年的中考數學來看,考試重點大概在這幾個方面:1、函數題型,這類題型佔中考數學總成績的15%左右。函數題型是同學們學習的難點,尤其是二次函數,相信大多數同學看到這類題都頭疼吧。2、整式、分式、二次根式的化簡運算,這些知識點都是初中數學學習的重點,也是我們數學學習的基礎知識,其中的因式分解及理解因式分解和整式乘法運算的關係、分式的運算是同學們的學習難點。3、數學幾何題型。
  • 數學教師整理:初中數學常考幾何模型匯總,學生坦言太有幫助了!
    數學教師整理:初中數學常考幾何模型匯總,學生坦言太有幫助了!在初中數學的學習當中,幾何可謂是考試當中的一個重難點,不管是解析幾何,還是平面幾何,不少數學基礎差的同學,解答起來都非常的困難。而且幾何不管是在選擇、填空小題當中,還是最後的解答應用題當中,都會有所涉及,因此學習好幾何這方面的知識,對於初中數學的學習是非常有幫助的,那麼如何才能啃透初中數學幾何知識點呢?幾何最考驗同學們的無非就是思維想像能力,比如做題的時候如何勾畫輔助線,又該怎樣才能把一個立體圖形想像成一個幾何圖形,這些都是需要同學們去思考解決的。
  • 初中學習方法:怎樣學好初中歷史
    中考網整理了關於初中學習方法:怎樣學好初中歷史,希望對同學們有所幫助,僅供參考。   初中歷史學習方法   一、要學會使用好課本   初中的歷史比較簡單,但要想學好卻也不容易。目前使用的歷史新教材,課本知識容量不大。首先要了解課本的基本結構。
  • 小學英語語法大全:各類語法知識詳細匯總,幫助孩子搞定重難點!
    小學階段需要掌握的語法知識雖然並不複雜,但是還是存在很多重難點。小學英語語法最初的認識是從詞性開始的,其中主要學習的就是名詞、冠詞、數詞、代詞、介詞、動詞、形容詞和副詞這八類。尤其是動詞方面,它牽扯著時態的變化以及個別動詞的特殊變化,所以一直是一個知識難點。
  • 如何學好初一數學
    通常情況下,小學數學學習優秀的學生進入初中,數學成績大概率會繼續延續以前的優秀,但也有個別學生被甩下;第二種情況是,隨著認知能力的提高,部分在小學數學成績中等的學生到了初中脫穎而出;還有一種情況是基礎特差的學生學習通常會更吃力,甚至完全學不會初中數學知識。
  • 周十五精煉數學:學好初中數學的四種方法
    不管是高中還是初中,數學都是重要的基礎學科,學好數學不僅能夠在總分中拉開分差,還有利於物理化學等科目的學習,幫助大家在各科中取得更好的成績。但是很多學生卻討厭數學,畏懼數學,究其原因在於他們認為數學很難。其實初中數學實在是算不上「難學」,只不過是他們沒有掌握恰當的學習方法,才會出現學習效率低下的問題,進而影響到學習積極性。
  • 初中數學經典幾何難題合集!中考必考,建議收藏列印
    初中數學經典幾何難題合集!中考必考,建議收藏列印「學好數理化,走遍天下都不怕」,想必很多同學在讀書的時候都聽到過這句話。那麼什麼學科是我們在學習的時候需要重點掌握的呢,想必很多人都會說數學這門科目。確實隨著新課改,數學這門科目對於初中的學生來說是越來越重要的,因為不僅僅是中考必考的科目,而且數學考試的分值也是相當的高,經常數學成績好的同學可以拉開數學成績不好的同學五十多分的分差。數學這門科目雖然重要,但是很多同學的數學成績卻不是很理想,尤其是數學中的幾何問題更是同學們學習的一個重難點,很多同學也因此在數學幾何問題上頻頻失分。
  • 初中數學與高中數學的知識構成對比
    初中數學與高中數學在知識構成方面,有少數重複的地方,但更多是內容的遞進,加深,拓寬。了解它們之間的聯繫與區別,可以站在更高的角度來整體把握高中數學,學好高中數學。下面我們分模塊進行對比。初中數學教材函數模塊。初中函數:學習了一次函數、正比例函數、反比例函數、二次函數、銳角三角函數以及它們的簡單應用。對於函數的性質只要求知道函數圖象位置,y隨x怎麼變化,開口,頂點等內容。
  • 初中生如何學好數學?看看這個!
    初中三年都可以用的數學複習資料,剛上初一的初中生現在還在迷茫階段,數學也不知道這怎麼學習,初二初三的也有很多學生數學差,學不好,這些問題是普遍存在的現象,不可以著急。數學不好偏科。只能一個知識點一個知識點的扣,一口吃不了一個大胖子。
  • 如何學好初中數學?優秀的學霸身上都有的4個習慣
    初中數學和小學相比:知識量加大,知識綜合性加強;對應用能力要求加大:如觀察、閱讀、記憶、思維、想像、操作、 表達等能力。所以,培養良好的學習習慣是非常重要的。(一)學好初中數學需要養成閱讀課本的習慣前蘇聯數學教育家斯託利亞爾言:「數學教學也就是數學語言的教學」。數學語言精練、語句嚴謹;所以只有做到對每個句子、每個概念、每個圖表都應細緻地閱讀分析,領會其內容、含義。
  • 初中數學重難點解析,全等三角形不會做怎麼辦?技巧都在這兒
    前言初中數學在所有科目當中算是最容易拉開分差的科目了。學懂了的同學很容易在數學科目上取得高分,而沒怎麼學懂的同學卻連及格都成為一種奢望。於是單科就容易造成幾十分的分差,這對孩子的升學以及將來接受更好的教育影響很大。然而初中數學並沒有想像中的那麼難。孩子之所以沒學懂,原因是多樣的。
  • 最全初中數學知識匯總框架圖,三年知識一目了然,中考必備
    最全初中數學知識匯總框架圖,三年知識一目了然,中考必備!很多學生提起數學都會覺得頭疼。一個普遍的狀態是,一講全會,一做全不對,排除計算上的問題,數學抽象的思維方式,注重應用能力的學科特點,都是給大家帶來困難的原因。