為全面貫徹落實黨的教育方針和十九大精神,以習近平新時代中國特色社會主義思想為指導,堅持立德樹人,弘揚和培育社會主義核心價值觀,具體落實中共福建省委、福建省人民政府印發的《關於全面深化新時代教師隊伍建設改革的實施意見》,加強學科關鍵能力和核心素養的考查,選拔新任教師,特制定本大綱。
一、考試性質
福建省中小學新任教師公開招聘考試是符合招聘條件的考生參加的全省統一的選拔性考試。考試結果將作為福建省中小學新任教師公開招聘參加面試的依據。招聘考試從教師應有的專業素質和教育教學能力等方面進行全面考核,擇優錄取,具有較高的信度、效度,必要的區分度和適當的難度。
二、考試目標與要求
著重考查考生的數學專業知識、教學技能,要求考生比較系統地理解和掌握從事小學數學教學工作必須具備的數學專業知識、教學技能和小學數學教學論等。在考查數學專業知識的同時,注重考查專業能力,突出靈活運用數學專業知識解決實際問題的能力。
1.數學專業知識的要求分為了解、理解、掌握三個層次。
⑴了解:要求對所列知識的含義及其背景有初步的、感性的認識,知道這一知識內容是什麼,並能在有關的問題中識別它。
⑵理解:要求對所列知識內容有較深刻的認識,能夠解釋、舉例或變形、推斷,並能利用知識解決有關問題。
⑶掌握:要求系統地掌握知識的內在聯繫,能運用所列知識分析和解決較為複雜的或綜合性的問題。
2.專業能力包括思維能力、運算能力、空間想像能力、實踐能力、創新能力。
⑴思維能力:能對問題或資料進行觀察、比較、分析、綜合抽象與概括;能用類比、歸納和演繹進行推理;能合乎邏輯地、準確地進行表述。
⑵運算能力:能根據法則、公式進行正確運算、變形和數據處理;能根據問題的條件和目標,尋找與設計合理、簡捷的運算途徑;能根據要求對數據進行估計和近似計算。
⑶空間想像能力:能根據條件作出正確的圖形,根據圖形想像出直觀形象;能正確地分析圖形元素及其相互關係;能對圖形進行分解、組合與變換;能運用圖形與圖表等手段形象地揭示問題的本質。
⑷實踐能力:能綜合應用所學數學知識、思想和方法解決問題,包括解決在相關學科、生產、生活中簡單的數學問題;能理解對問題陳述的材料,並對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數學問題,建立數學模型;能運用相關的數學方法解決問題並加以驗證;能運用數學語言正確地表述和說明。
⑸創新能力:能選擇有效的教學方法和手段,對教學信息、情境進行分析;能綜合運用所學的數學知識、思想和方法,進行獨立的思考、探索和研究,提出小學數學教學中的新問題,找到解決問題的途徑、方法和手段,創造性地解決教學問題。
3.教學技能要求。
著重要求考生在掌握小學數學專業知識和小學教育教學基本理論的基礎上,運用這些知識理論分析教材,合理制定教育教學計劃,合理利用教學資源,科學編寫教學方案,靈活運用啟發式、探究式、討論式、參與式等教學方式,並將現代教育技術手段滲透運用到教學中,進行教學案例評析等。
三、考試範圍與內容
㈠數學專業知識
1.數的認識
考試內容:整數、分數、小數、百分數、有理數、實數。
考試要求:
⑴掌握整數、分數、小數和百分數的意義,按照要求進行數的改寫和求近似數;掌握數位和數級的順序、名稱及計數單位間的關係;運用靈活的方法比較分數、小數和百分數的大小。
⑵理解小數的性質、分數的基本性質,運用分數的基本性質約分和通分;理解分數、小數和百分數之間的關係,運用靈活的方法進行互化。
⑶理解有理數的意義;了解無理數和實數的概念。
⑷理解平方根、算術平方根、立方根的概念。
2.數的運算
考試內容:四則運算、開方與乘方運算、整除、質數與合數、最大公約數與最小公倍數、算術基本定理。
考試要求:
⑴理解四則運算的意義;掌握運算法則;理解加、減、乘、除算式各項之間的關係;掌握口算、筆算、估算的基本方法,理解相應算理。
⑵理解積變化的規律,商不變的性質,小數點位置移動引起的變化規律;掌握加法運算定律、乘法運算定律和有關運算的性質,靈活運用定律和性質進行整數、小數、分數的簡便運算。
⑶掌握比和比例的各部分名稱及相互關係,理解正比例和反比例的意義;理解比、比例的意義和基本性質,求比值、化簡比和解比例的有關問題。
⑷熟練掌握小學階段所要求的數學問題的數量關係,重點理解實際問題中的工程問題、行程問題、分數和百分數問題、幾何形體問題等,綜合運用知識和方法解決實際問題,體現運用數學解決問題的思考方法。
⑸掌握有理數的加、減、乘、除、乘方及簡單的混合運算,運用有理數的運算解決簡單的問題。
⑹理解二次根式的概念及其加、減、乘、除運算法則,用它進行有關實數的簡單四則運算。
⑺了解整數對加、減、乘的封閉性,利用整數對加、減、乘的封閉性討論問題。
⑻掌握整除、約數、倍數的定義,用定義證明整除問題。
⑼掌握帶餘除法(被除數、除數、不完全商、餘數)的定義、帶餘除法表達式。
⑽掌握奇數、偶數的定義;掌握「奇數≠偶數」,並能利用這個性質及「奇偶分析法」分析問題。
⑾掌握被2,3,4,5,8,9,11整除的數的特徵。
⑿理解因數(約數)、倍數、奇數、偶數、質數、合數、質因數、最大公因數(最大公約數)、最小公倍數、互質數的概念;求幾個整數的最大公因數和最小公倍數;利用最大公因數、最小公倍數解決簡單的實際問題。
⒀理解算術基本定理,將自然數分解質因數,寫出自然數的標準分解式。
3.常見的量
考試內容:計量單位、進率、換算。
考試要求:
⑴理解常用的時間單位、長度單位、質量單位、面積單位、體積和容積單位及其進率。
⑵熟練運用單位間的進率進行換算。
4.式與方程
考試內容:代數式、整式與分式、方程。
考試要求:
⑴理解用字母表示數的意義,分析簡單問題的數量關係並用代數式表示,能求代數式的值。
⑵理解整數指數冪的意義和基本性質;理解整式的概念並進行簡單的整式加法、減法、乘法運算。
⑶理解分式的概念,利用分式的基本性質進行分式加、減、乘、除運算。
⑷理解等式的性質;理解方程、方程的解、解方程等概念。
⑸根據具體問題中的數量關係,列出方程;熟練解一元一次方程、一元二次方程、二元一次方程組、可化為一元一次方程的分式方程;根據具體問題的實際意義,檢驗結果是否合理。