射頻放大器基礎知識:Doherty功率放大器的負載阻抗調製工作原理

2021-01-08 RFID世界網

  

     Doherty放大器最重要的特性是負載調製(load modulation),它完美地合成了兩個放大器的不對稱輸出功率。在小功率等級下只有一個放大器(稱為載波放大器,carrier amplifier)以低功率電平工作,並且在相同功率等級下Doherty 功放的效率是採用兩倍大放大器在相同輸出功率等級下所獲得的效率的兩倍。Doherty 功放兩個放大器(第二個稱為峰值放大器(peaking amplifier))以更高的功率電平產生功率,並且由於良好的負載調製特性,載波放大器(carrier amplifier)在該區域中以峰值效率模式工作。該特性提供了對幅度調製信號的有效放大。受載波和峰值放大器的電流比調製的負載可以自我調節,可以實現在兩個輸出功率等級下的峰值效率:其中當峰值放大器(PA,peaking amplifier)剛導通時,載波放大器(CA,carrier amplifier)提供第一個峰值效率,當兩個放大器產生其滿功率時,在這個輸出功率等級下Doherty放大器處於第二個峰值效率點。 Doherty負載調製的另一個重要特性是放大器的總增益是恆定的,既它提供的是線性放大。

 負載調製行為:負載阻抗調製

圖1.1由電壓和電流源驅動的負載調製電路

最簡單的負載阻抗調製概念說明如圖1.1所示,其中壓控電壓源(VCVS,voltage-controlled voltage source )與壓控電流源(VCCS,voltage-controlled current source)以及負載電阻R並聯.VCVS看到阻抗Z1由電流I2調製,如下面的方程所示:

 

將電流I2從零變為IR = V1 / R,Z1從R變為∞。在該電路中,VCCS(壓控電流源)調製VCVS(壓控電壓源)的負載阻抗。在Doherty放大器中,使用I2調製Z1的能力被適當地用於跟蹤放大器的最佳阻抗,以在回退輸出功率電平下也能有效地操作。圖1.1中的設置的一個重要特性是整個Doherty系統的線性度僅由壓控電壓源(VCVS,voltage-controlled voltage source )的線性度決定,因為負載兩端的電壓Vout總是等於V1。因此,只要V1與Vin成線性比例,無論I2的值如何,都可以保證線性。為此目的,阻抗Z1應通過指定I2對Vin曲線來跟蹤給定的阻抗曲線與Vin的關係。雖然在數學上很容易定義它,但在實踐中實現給定的I2與Vin曲線可能是一個挑戰。

在負載調製技術中,VCVS和VCCS具有重要作用。前者確保放大器的線性度,而後者用作負載調製器件,其I2對Vin曲線確定VCVS看到的阻抗Z1。這兩個屬性對於Doherty電路配置的推導都很重要。

Doherty放大器使用不同的電路拓撲進行負載調製。它由兩個放大器(兩個電流源)和一個阻抗反相網絡組成,該阻抗反相網絡將一個電流源轉換為電壓源。該轉換放大器稱為載波放大器,另一個電流源放大器稱為峰值放大器。

圖1.2 Doherty放大器的工作圖

圖1.2顯示了分析Doherty放大器電路的操作圖。輸出負載通過阻抗逆變器(四分之一波傳輸線)連接到載波放大器,並直接連接到峰值放大器。在該圖中,峰值功率下載波和峰值放大器的最佳功率匹配阻抗為R0,當峰值放大器關閉時,載波放大器的負載由於兩個放大器的並聯連接而變為R0 / 2 。假設器件的輸出電容器諧振,四分之一波長線的相位延遲在輸入端得到補償。

阻抗逆變器的特徵阻抗也為R0。載波放大器在Z1『和Z1處的負載阻抗如圖1.2所示,由下式給出:

其中α= I2 / I1' 方程(1.3)表明表示載波放大器的電流源I1看到的負載阻抗由第二電流源I2調製, I2是峰值放大器的輸出電流。應注意,由於阻抗變化,I1』與I1不同。此外,在正常的Doherty操作中,峰值放大器的電流電平從0變化到I1=Imax,Imax是兩個放大器的最大電流,α從0變為1。通常情況下,I1和I2可以處理相同的電流量,即兩個放大器的相同尺寸器件,當I2 =I1=Imax時,在峰值功率情況下,Z1為R0,因為在峰值功率情況下I1等於I1『。當I2 = 0時Z1為2R0,且I2介於0和Imax之間變化時,Z1也在兩個值之間變化。這是Doherty負載調製行為,如圖1.3C所示。

因為電流I2為零,因此峰值放大器提供開路負載直到它導通。在導通之後,阻抗Z2也被類似地調製,其由下式給出:

圖1.3 載波和峰值放大器的電流,電壓和負載阻抗形狀:(A)電流曲線,(B)電壓曲線,(C)負載阻抗

負載調製行為也在圖1.3C中描述。載波阻抗從2R0調製到R0,峰值阻抗從無窮大調製到R0。在該圖中,假設每個電流源與輸入電壓成線性比例,並且R0等於電晶體的ROPT,即最佳功率匹配電阻。如圖1.3A所示,由於峰值放大器的C類偏置,I2在中點導通,並且增加到最大值。由於B類偏壓,I1從零柵極電壓線性增加。在該操作中,峰值放大器的跨導應該是載波放大器的跨導的兩倍,這是由於其輸出電壓擺幅的一半用於產生最大電流。為了獲得兩倍大的跨導,峰值放大器應該比載波放大器大兩倍。但在這種情況下,只有一半的峰值電流被利用,浪費了功率生成能力。為了解決這個問題,開發了不均勻的驅動技術,將在後面的文章中介紹。

1

相關焦點

  • 關於射頻晶片中的功率放大器知識淺析
    射頻功率放大器(RF PA)是發射系統中的主要部分,其重要性不言而喻。在發射機的前級電路中,調製振蕩電路所產生的射頻信號功率很小,需要經過一系列的放大(緩衝級、中間放大級、末級功率放大級)獲得足夠的射頻功率以後,才能饋送到天線上輻射出去。為了獲得足夠大的射頻輸出功率,必須採用射頻功率放大器。在調製器產生射頻信號後,射頻已調信號就由RF PA將它放大到足夠功率,經匹配網絡,再由天線發射出去。
  • 射頻功率放大器基本概念、分類及電路組成
    在發射機的前級電路中,調製振蕩電路所產生的射頻信號功率很小,需要經過一系列的放大(緩衝級、中間放大級、末級功率放大級)獲得足夠的射頻功率以後,才能饋送到天線上輻射出去。為了獲得足夠大的射頻輸出功率,必須採用射頻功率放大器。在調製器產生射頻信號後,射頻已調信號就由 RF PA 將它放大到足夠功率,經匹配網絡,再由天線發射出去。
  • 射頻功率放大器你應該知道的事
    射頻功率放大器你應該知道的事 佚名 發表於 2019-11-10 09:58:17 身為射頻工程師,工作多多少少都會涉及到功率放大器。功率放大器可以說是很多射頻工程師繞不過的坎。
  • 低噪聲放大器設計的理論基礎
    圖1 電晶體放大器電路原理框圖放大器必須滿足的首要條件之一是其在工作頻段內的穩定性。這一點對於射頻電路是非常重要的,因為射頻電路在某些工作頻率和終端條件下有產生振蕩的趨勢。當放大器的輸入和輸出端的反射係數的模都小於1,即Γin1, Γout1 時,不管源阻抗和負載阻抗如何,網絡都是穩定的,稱為絕對穩定;當輸入端或輸出端的反射係數的模大於1時,網絡是不穩定的,稱為條件穩定。對條件穩定的放大器,其負載阻抗和源阻抗不能任意選擇,而是有一定的範圍,否則放大器不能穩定工作【3】。
  • 【功率器件心得分享】射頻功率放大器小小心得
    玩射頻功放的人都知道,射頻功率放大器(RF PA)是各種無線發射機的重要組成部分。在發射機的前級電路中,調製振蕩電路所產生的射頻信號功率很小,需要經過一系列的放大一緩衝級、中間放大級、末級功率放大級,獲得足夠的射頻功率以後,才能饋送到天線上輻射出去。
  • 功率放大器的技術指標和原理詳細說明
    功率放大器的技術指標有哪些?2. 功率放大器的原理是什麼?如果您正在學習功率放大器相關知識,抑或對於本文即將介紹的功率放大器相關內容具有興趣,不妨和小編一起往下探索哦。   4.阻尼因子   其定義為功率放大器的負載阻抗(大功率管內部電阻加上音箱的接線線阻),例如8Ω:0.04Ω=200:1,一般要求比值比較大,但不能太大,太大會覺得揚聲器發聲單薄,太小則會使聲音混濁,聲音層次差,聲像分布不佳。   5.輸出阻抗   通常有8Ω、4Ω、2Ω等值,此值越小,說明功率放大器負載能力越強。
  • 一種全新高功率線性功率放大器的設計
    在進行功率放大器的設計時,由於缺少電晶體的大功率精確模型,並且廠商一般只提供小信號S參數,而功率放大器工作在非線性,因此嚴格的試驗設計是必須的(比如可以採用負載牽引技術),這是一項比較困難的任務,要不斷的完善以達到最好的性能。
  • 寬頻帶放大器,寬頻帶放大器電路原理是什麼
    最常見的寬頻帶高頻功率放大器是利用寬領帶變壓器做輸入、輸出或級間福合電路,並實現阻抗匹配。寬領帶變壓器有兩種形式。一種是利用普通變壓器的原理,只是採用高額磁芯來擴展頻帶,它可以工作在短波波段。另一種是利用傳輸線原理與變壓器原理二者結合的所謂傳治線變壓器,其頻帶可以做得很寬。
  • 放大器工作原理
    只是一個統稱,其具體可以分為通用型集成運算放大器、高速型集成運算放大器、低功耗集成運算放大器、高輸入阻抗集成運算放大器、寬頻帶集成運算放大器、功率型集成運算放大器、光纖放大器、有線電視幹線放大器等等,其中最多的還是運算放大器,因此,我們接下來就主要對運算放大器的工作原理進行詳細講述
  • 低壓100 W短波功率放大器研究與設計
    短波功率放大器是實現短波通信的基礎。依據不同的使用環境和通信距離可以選擇幾瓦至幾十千瓦的短波功率放大器,其供電電壓也是種類繁多。本文介紹的100 W短波功率放大器的應用場景較為廣泛,具有典型的意義;而且由於採用額定工作電壓+14.4 V,與市面上的蓄電池電壓相符,更加拓寬了應用範圍;另外,該短波功率放大器具有體積重量小、工作電壓低和控制簡單等特點。
  • 精彩繼續:各种放大器電路分析薈萃之功率放大器
    前面,給大家分享了放大電路的一些基本知識和電路,這次繼續分享剩餘部分,主要是功率放大器部分,這些大家應該接觸的比較多,有興趣的甚至可以動手製作。另外,請大家不要糾結這是很久很老的線路圖,我只是告訴大家,我這是分享這些知識的原理,時代再怎麼發展,技術再怎麼更新,原理不變!正於數位技術中的0和1一樣。。。
  • 基於ADS的功率放大器設計實例與仿真分析
    為了使射頻功率放大器輸出一定的功率給負載,採用一種負載牽引和源牽引相結合的方法進行功率放大器的設計。通過ADS軟體對其穩定性、輸入/輸出匹配、輸出功率進行仿真,並給出清晰的設計步驟。
  • 射頻電路阻抗匹配原理
    阻抗匹配   信號傳輸過程中負載阻抗和信源內阻抗之間的特定配合關係。一件器材的輸出阻抗和所連接的負載阻抗之間所應滿足的某種關係,以免接上負載後對器材本身的工作狀態產生明顯的影響。對電子設備互連來說,例如信號源連放大器,前級連後級,只要後一級的輸入阻抗大於前一級的輸出阻抗5-10倍以上,就可認為阻抗匹配良好;對於放大器連接音箱來說,電子管機應選用與其輸出端標稱阻抗相等或接近的音箱,而電晶體放大器則無此限制,可以接任何阻抗的音箱。
  • 高頻放大器的工作原理_高頻放大器的作用
    該電路一般為設備的輸入級,被檢測的微弱信號首先要通過該電路放大,然後進行後續處理。所以,高頻放大器的性能指標對整個儀器性能起著決定性的作用。   高頻放大器的工作原理   使用高頻功率放大器的目的   放大高頻大信號使發射機末級獲得足夠大的發射功率。   高頻功率信號放大器使用中需要解決的問題   ①高效率輸出。 ②高功率輸出。
  • 射頻功率放大器(RF PA)概述
    在發射機的前級電路中,調製振蕩電路所產生的射頻信號功率很小,需要經過一系列的放大(緩衝級、中間放大級、末級功率放大級)獲得足夠的射頻功率以後,才能饋送到天線上輻射出去。為了獲得足夠大的射頻輸出功率,必須採用射頻功率放大器。在調製器產生射頻信號後,射頻已調信號就由RF PA將它放大到足夠功率,經匹配網絡,再由天線發射出去。
  • 射頻功率放大器產業鏈及機遇解讀!
    隨著 5G 進程的加快,5G 基站、智能移動終端及 IoT終端射頻功率放大器(PA)使用量大幅增加,將迎來發展良機。智能移動終端射頻 PA 市場規模將從 2017 年的50 億美元增長到 2023 年的 70 億美元,複合年增長率為 7%,高端 LTE 功率放大器市場的增長,尤其是高頻和超高頻,將彌補 2G/3G 市場的萎縮。
  • 關於低頻功率放大器的介紹
    它是變壓器耦合五極管功率放大線路所組成單管功率放大器,通常工作於甲類。 (一)低頻功率放大器的工作過程 其工作過程與低頻電壓放大器相似,電壓放大和功率放大雖然都是放大器,但是對功率放大器的主要矛盾方面不是大的電壓放大量,而是獲得足夠的音頻功率推動終端負載(揚聲器、耳機等)工作。
  • 各种放大器電路之功率放大器的分析
    供給負載一定輸出功率的放大器叫做功率放大器。功率放大器主要是考慮如何獲得最大的輸出功率、最小的失真和最高的效率。 由於變壓器耦合損耗小,又能變換阻抗,使負載和電晶體相匹配,所以功率放大器廣泛採用變壓器耦合電路。音頻功率放大器可以根據不同的要求,採用甲類放大器、乙類放大器和甲乙類放大器。這種功率放大器是在甲類工作狀態下運用的,電晶體在輸入信號的整個周期內都有放大作用。 C是耦合電容。R1、R2是上下偏置電阻。
  • 放大器的輸入阻抗和輸出阻抗是交流電阻還是直流電阻?
    對於一個理想的電壓源(包括電源),內阻應該為0,或理想電流源的阻抗應當為無窮大。現實中的電壓源,則做不到這一點,常用一個理想電壓源串聯一個電阻r的方式來等效一個實際的電壓源。這個跟理想電壓源串聯的電阻r就是信號源/放大器輸出/電源的內阻了。當這個電壓源給負載供電時,就會有電流I從這個負載上流過,並在這個電阻上產生I×r的電壓降。這將導致電源輸出電壓的下降,從而限制了最大輸出功率。
  • 放大電路的基礎知識問答
    放大電路的分類放大電路的種類很多。按工作頻率分:直流放大器、低頻放大器、中頻放大器、高頻放大器、視頻放大器等。按用途分類:電流放大器、電壓放大器及功率放大器。按工作狀態分:甲類--弱信號放大;乙類一一高頻功率放大。按信號大小分:小信號放大電路和大信號放大電路。2.