簡單的直流升壓電路圖講解

2021-02-24 暢學EDA

幾款適合萬用表使用的小型直流升壓器電路,這些電路結構簡單、元件少,改裝後可將電路板直接置於萬用表中疊層電池的位置替代使用。

如圖所示是一種輸出電壓可達22.5 V的直流升壓器電路,可用來代替22.5 V的疊層電池。

它利用萬用表中的一節1.5V電池供電,工作電流為25mA,輸出電流約為0.5mA,用於萬用表的高阻擋足夠富裕。電路中VT1與VT2組成互補多諧振蕩器,它的振蕩頻率約為2kHz。T是升壓變壓器,初級就是互補多諧振蕩器的負載,次級為升壓繞組,輸出一個較高的脈衝電壓。該電壓經過二極體VD1和電容C2整流濾波後成為直流高壓,再經過電阻R3與穩壓管VD2穩壓後可輸出一個較穩定的高電壓。

電路中變壓器T可用電晶體收音機用的502型音頻輸出變壓器,次級作為升壓變壓器的初級,初級中間的抽頭不用,兩端抽頭作為升壓變壓器的次級。如果找不到合適的變壓器,也可以用收音機輸人輸出變壓器的矽鋼片自製,初級用直徑為0.25mm的高強度漆包線繞110匝,次級用直徑0.21mm的高強度漆包線繞520匝。初次級間要加一層絕緣紙,並注意初次級線圈的同名端。

如圖所示是一種構造很簡單的小型直流升壓器,可用來取代15V的疊層電池。電路的核心元件一變壓器T使用的是袖珍驗鈔器的專用變壓器。電路耗電約40mA,輸出電壓為15V。如果萬用表15V電池的正極與1.5V電池的負極相接,只需將圖7—70中VD1(C1、VDZ的極性調過來,這樣將輸出一個-15V電壓)

如圖所示是一種穩壓型直流升壓電路。該電路可將一節1.5V的電池升壓至9V,用來取代9V疊層電池使用。電路空載輸人電流低於1.2mA,轉換效率高達60%。該電路由振蕩電路和穩壓電路構成,其中VT1、VT2、C2組成振蕩器,色碼電感L為儲能電感,VD2為整流二極體,C3為輸出濾波電容,VT3、VD1、VD3及R2為穩定輸出電壓的穩壓電路。輸出電壓約等於VD3的穩壓值。

如圖所示是一種利用1.2V、500mAh的鎳鎘電池做電源的逆變電源電路,輸出直流電壓為9V,可供數字式萬用表使用。圖7-72中變壓器T利用15mm的磁環穿繞而成(元器件參數圖中均已標註人名為數字萬用表的電源開關。

如圖所示是自控式數字表逆變電源電路。它不需要單獨設立電源開關或對表內開關進行改造。該電路具有耗電省、穩定可靠、不影響儀表精度等特點。電路中的變壓器T是用E3型鐵氧體磁芯、各折去一角後加工成口字形,L2在內,L1在外。整個逆變電源工作時,電池工作電流約為70mA。

下圖為仿製電路:輸入可低至0.8V,輸出電流可達10mA

輸出開路,輸入電流為零。

T:E3日字型磁芯L1=18匝=125μH L2=180匝=12mH

為了方便大家學習,您還可以關注暢學電子和單片機兩個公眾號,獲取更多學習知識,希望對您的學習工作有所幫助。

相關焦點

  • 最簡單的直流升壓電路圖講解
    如圖所示是一種構造很簡單的小型直流升壓器,可用來取代15V的疊層電池。電路的核心元件一變壓器T使用的是袖珍驗鈔器的專用變壓器。電路耗電約40mA,輸出電壓為15V。如圖所示是一種穩壓型直流升壓電路。該電路可將一節1.5V的電池升壓至9V,用來取代9V疊層電池使用。電路空載輸人電流低於1.2mA,轉換效率高達60%。該電路由振蕩電路和穩壓電路構成,其中VT1、VT2、C2組成振蕩器,色碼電感L為儲能電感,VD2為整流二極體,C3為輸出濾波電容,VT3、VD1、VD3及R2為穩定輸出電壓的穩壓電路。輸出電壓約等於VD3的穩壓值。
  • 三極體升壓電路充放電講解及幾種常用電路
    實際上,這兩個電路的含義是相同的,升壓電路就是自舉電路。升壓電路是一種利用電容放電和電源電壓的疊加,來使電壓得到提升的一種電路。本篇文章就將針對新手,簡述升壓電路的原理。  三極體升壓電路原理  首先,在講解原理之前先以一個例子來幫助大家進行理解。一個12V的電路,電路中有一個場效應管需要15V的驅動電壓,這個電壓怎麼弄出來?就是用自舉。
  • 用NE555製作簡單的升壓電路,直流升壓輸出,無需變壓器
    上次我們發了個用NE555製作的升壓電路的視頻,深受大家歡迎,讀者反響很大。
  • 如何設計一款直流升壓電路
    可攜式設備對重量提出了要求,重量小就決定了不能使用較多的電池,從而使得在滿足便攜的同時不能輸出高電壓,也無法滿足某些器件對電壓的需求,所以必須要對低電壓進行升壓,這就用到了升壓電路。所謂直流升壓電路,就是輸出電壓比輸入電壓要高,實現電壓抬升的目的,一般用在電池供電的便攜設備當中,如手持式掃碼機、數位相機的閃光燈、電蚊拍等。其實現起來一般有兩種方式:脈寬調製方式和頻率調製方式。
  • 小白也能看懂:附圖講解 Boost升壓電路的工作原理
    Boost電路是一種開關直流升壓電路,它能夠使輸出電壓高於輸入電壓。在電子電路設計當中算是一種較為常見的電路設計方式。本篇文章針對新手,將為大家介紹Boost升壓電路的工作原理。 圖1 Boost開關升壓電路的原理圖 假定那個開關(三極體或者MOS管)已經斷開了很長時間
  • 升壓晶片很簡單(一),快速選擇升壓晶片+利用升壓晶片設計LED電源
    升壓晶片在電子電路中應用較多,但對於升壓晶片,很多朋友並不了解。本文對於升壓晶片的講解,將基於兩大方面:一、如何基於XL6009升壓晶片設計LED閃光燈電源,二、如何快速選擇直流升壓晶片。如果你對本文即將要講解的內容存在一定興趣,不妨繼續往下閱讀哦。
  • 電路中電容是如何升壓的
    打開APP 電路中電容是如何升壓的 創意diy分享 發表於 2020-02-12 14:06:49   電容在電子電路中一般用於濾波、耦合、旁路或振蕩,它們是不能直接用來放大電壓的。
  • 升壓IC之SX1308的SX1308應用電路圖與SX1308升壓電路圖
    打開APP 升壓IC之SX1308的SX1308應用電路圖與SX1308升壓電路圖 發表於 2020-09-10 14:09:01
  • 分享幾種常見的DC-DC升壓電路,新手必看!
    這裡介紹幾款適合萬用表使用的小型直流升壓器電路,這些電路結構簡單、元件少,改裝後可將電路板直接置於萬用表中疊層電池的位置替代使用。 如圖所示是一種輸出電壓可達22.5 V的直流升壓器電路,可用來代替22.5 V的疊層電池。
  • MC34063DC/DC5v升壓12v電路圖
    MC34063本身包含了DC/DC變換器所需要的主要功能的單片控制電路且價格便宜。它由具有溫度自動補償功能的基準電壓發生器、比較器、佔空比可控的振蕩器,R-S觸發器和大電流輸出開關電路等組成。該器件可用於升壓變換器、降壓變換器、反向器的控制核心,由它構成的DC/DC變換器僅用少量的外部元器件。主要應用於以微處理器(MPU)或單片機(MCU)為基礎的系統裡。電路原理該電路是在低靜態電流典型的降壓電路上,用開關變壓器取代自感線圈實現的。利用開關變壓器以獲取隔離直流電源的能量供給。
  • 升壓晶片很簡單(二),升壓晶片電路設計選型秘籍
    升壓晶片應用很多,對於升壓晶片,其原理並不難。升壓晶片在應用時,往往令人糾結之處在於升壓晶片的選型。為幫助大家解決該難題,本文將對常見升壓晶片電路設計的選型予以匯總。如果你對本文即將要涉及的內容存在一定興趣,不妨繼續往下閱讀哦。
  • 能將電池「身體掏空」的經典升壓電路—焦耳小偷電路DIY
    今天向大家介紹一種經典的升壓電路—焦耳小偷電路,boost升壓電路。
  • 直流小功率電機驅動電路設計
    簡介 直流小功率電機廣泛適用於家電、工控、計算機等諸多設備,直流電機的種類也非常多,通常可以分為有刷和無刷兩大類。電機的驅動器件和驅動電路也非常成熟和多樣。本文主要以常見的幾種驅動方式和器件為例,重點闡述了各種驅動電路設計的重點和要點。
  • 3.7v升壓12v升壓器電路圖大全(七款升壓器電路工作原理分析)
    >3.7v升壓12v升壓器電路圖(一) C1 是正反饋的作用。 3.7v升壓12v升壓器電路圖(二)   3.7V轉12V1.5A,3.7V升壓12V1.5A電路圖,非同步整流升壓典型電路,外置肖特基二極體。外圍簡單。
  • 三款移動電源電路圖講解
    打開APP 三款移動電源電路圖講解 發表於 2019-10-18 09:36:14   移動電源電路圖一   這幾年,隨著可攜式產品不斷成長
  • xl6009晶片中文資料及升壓應用電路
    打開APP xl6009晶片中文資料及升壓應用電路 發表於 2017-12-15 09:17:18   一、XL6009
  • XL6009升壓/降壓電路
    XL6009是一款方便的升壓/降壓控制晶片,採用單列5腳TO263封裝,內置N溝道功率MOS管,輸入電壓為5-32V;工作電流為4A,工作頻率為
  • 教你做個220V轉12V直流穩壓電壓,方法很簡單
    在前兩篇文章給大家介紹了二極體的一些知識,其中就提到了二極體的應用之一「整流橋」,今天就用這個整流橋為大家分享一款直流穩壓電源的製作方法,方法也不難,只要認真看下去學會怎麼回事是沒問題的,電路是離不開電路圖的,我們先來看下這個直流穩壓電源的電路圖在電路圖中我們可以看到用到一個220V
  • DC-DC升壓降壓電路的應用方法
    DC-DC降壓(buck電路)降壓和升壓的性質是類似的
  • BOOST電路的PSpice仿真分析與設計
    1 引言  BOOST 電路又稱為升壓型電路,是一種直流一直流變換電路,其電路結構如圖1所示。此電路在開關電源領域內佔有非常重要的地位,長期以來廣泛的應用於各種電源設備的設計中。