講座預告 | Stochastic Optimization Forests

2021-03-02 上財信息

We study contextual stochastic optimization problems, where we leverage rich auxiliary observations (e.g., product characteristics) to improve decision making with uncertain variables (e.g., demand). We show how to train forest decision policies for this problem by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm. We realize this seemingly computationally intractable problem by developing approximate splitting criteria that utilize optimization perturbation analysis to eschew burdensome re-optimization for every candidate split, so that our method scales to large-scale problems. We prove that our splitting criteria consistently approximate the true risk and that our method achieves asymptotic optimality. We extensively validate our method empirically, demonstrating the value of optimization-aware construction of forests and the success of our efficient approximations. We show that our approximate splitting criteria can reduce running time hundredfold, while achieving superb decision making performance.

相關焦點