作者: 一隻愛折騰的後端攻城獅
知乎專欄|後端攻城獅:
https://zhuanlan.zhihu.com/c_1011199533304410112
個人公眾號:zone7
閱讀本文大約需要 31 分鐘
概述前言
推薦
plotly
bokeh
pyecharts
後記
前言更新:上一篇文章《python 數據可視化利器》中,我寫了 bokeh、pyecharts 的用法,但是有一個挺強大的庫 plotly 沒寫,主要是我看到它的教程都是在 jupyter notebooks 中使用,說來也奇怪,硬是找不到如何本地使用(就是本地輸出 html 文件),所以不敢寫出來。現在已經找到方法了,這裡我就在原文的基礎上增加了 plotly 的部分教程。
前段時間有讀者向我反映,想看看數據可視化方面的文章,這不?現在就開始寫了,如果你想看哪些方面的文章,可以通過留言或者後臺告訴我。數據可視化的第三方庫挺多的,這裡我主要推薦兩個,分別是 bokeh、pyecharts。如果我的文章對你有幫助,歡迎關注、點讚、轉發,這樣我會更有動力做原創分享。
推薦數據可視化的庫有挺多的,這裡推薦幾個比較常用的:
Matplotlib
Plotly
Seaborn
Ggplot
Bokeh
Pyechart
Pygal
Plotlyplotly 文檔地址(https://plot.ly/python/#financial-charts)
plotly 有 online 和 offline 兩種方式,這裡只介紹 offline 的。
這是 plotly 官方教程的一部分
import plotly.plotly as py
import numpy as np
data = [dict(
visible=False,
line=dict(color='#00CED1', width=6), # 配置線寬和顏色
name='𝜈 = ' + str(step),
x=np.arange(0, 10, 0.01), # x 軸參數
y=np.sin(step * np.arange(0, 10, 0.01))) for step in np.arange(0, 5, 0.1)] # y 軸參數
data[10]['visible'] = True
py.iplot(data, filename='Single Sine Wave')
只要將最後一行中的
py.iplot
替換為下面代碼
py.offline.plot
便可以運行。
漏鬥圖這個圖代碼太長了,就不 po 出來了。
好吧,不知道怎麼翻譯,直接用原名。
import plotly.plotly
import plotly.graph_objs as go
import numpy as np
y0 = np.random.randn(50)-1
y1 = np.random.randn(50)+1
trace0 = go.Box(
y=y0
)
trace1 = go.Box(
y=y1
)
data = [trace0, trace1]
plotly.offline.plot(data)
好吧,不知道怎麼翻譯,直接用原名。
import plotly.graph_objs as go
trace1 = go.Barpolar(
r=[77.5, 72.5, 70.0, 45.0, 22.5, 42.5, 40.0, 62.5],
text=['North', 'N-E', 'East', 'S-E', 'South', 'S-W', 'West', 'N-W'],
name='11-14 m/s',
marker=dict(
color='rgb(106,81,163)'
)
)
trace2 = go.Barpolar(
r=[57.49999999999999, 50.0, 45.0, 35.0, 20.0, 22.5, 37.5, 55.00000000000001],
text=['North', 'N-E', 'East', 'S-E', 'South', 'S-W', 'West', 'N-W'], # 滑鼠浮動標籤文字描述
name='8-11 m/s',
marker=dict(
color='rgb(158,154,200)'
)
)
trace3 = go.Barpolar(
r=[40.0, 30.0, 30.0, 35.0, 7.5, 7.5, 32.5, 40.0],
text=['North', 'N-E', 'East', 'S-E', 'South', 'S-W', 'West', 'N-W'],
name='5-8 m/s',
marker=dict(
color='rgb(203,201,226)'
)
)
trace4 = go.Barpolar(
r=[20.0, 7.5, 15.0, 22.5, 2.5, 2.5, 12.5, 22.5],
text=['North', 'N-E', 'East', 'S-E', 'South', 'S-W', 'West', 'N-W'],
name='< 5 m/s',
marker=dict(
color='rgb(242,240,247)'
)
)
data = [trace1, trace2, trace3, trace4]
layout = go.Layout(
title='Wind Speed Distribution in Laurel, NE',
font=dict(
size=16
),
legend=dict(
font=dict(
size=16
)
),
radialaxis=dict(
ticksuffix='%'
),
orientation=270
)
fig = go.Figure(data=data, layout=layout)
plotly.offline.plot(fig, filename='polar-area-chart')
篇幅有點長,這裡就不 po 代碼了。
這裡展示一下常用的圖表和比較搶眼的圖表,詳細的文檔可查看(https://bokeh.pydata.org/en/latest/docs/user_guide/categorical.html)
條形圖這配色看著還挺舒服的,比 pyecharts 條形圖的配色好看一點。
條形圖
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral6
from bokeh.plotting import figure
output_file("colormapped_bars.html")# 配置輸出文件名
fruits = ['Apples', '魅族', 'OPPO', 'VIVO', '小米', '華為'] # 數據
counts = [5, 3, 4, 2, 4, 6] # 數據
source = ColumnDataSource(data=dict(fruits=fruits, counts=counts, color=Spectral6))
p = figure(x_range=fruits, y_range=(0,9), plot_height=250, title="Fruit Counts",
toolbar_location=None, tools="")# 條形圖配置項
p.vbar(x='fruits', top='counts', width=0.9, color='color', legend="fruits", source=source)
p.xgrid.grid_line_color = None # 配置網格線顏色
p.legend.orientation = "horizontal" # 圖表方向為水平方向
p.legend.location = "top_center"
show(p) # 展示圖表
可以對比不同時間點的量。
年度條形圖
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource, FactorRange
from bokeh.plotting import figure
output_file("bars.html") # 輸出文件名
fruits = ['Apple', '魅族', 'OPPO', 'VIVO', '小米', '華為'] # 參數
years = ['2015', '2016', '2017'] # 參數
data = {'fruits': fruits,
'2015': [2, 1, 4, 3, 2, 4],
'2016': [5, 3, 3, 2, 4, 6],
'2017': [3, 2, 4, 4, 5, 3]}
x = [(fruit, year) for fruit in fruits for year in years]
counts = sum(zip(data['2015'], data['2016'], data['2017']), ())
source = ColumnDataSource(data=dict(x=x, counts=counts))
p = figure(x_range=FactorRange(*x), plot_height=250, title="Fruit Counts by Year",
toolbar_location=None, tools="")
p.vbar(x='x', top='counts', width=0.9, source=source)
p.y_range.start = 0
p.x_range.range_padding = 0.1
p.xaxis.major_label_orientation = 1
p.xgrid.grid_line_color = None
show(p)
餅圖
from collections import Counter
from math import pi
import pandas as pd
from bokeh.io import output_file, show
from bokeh.palettes import Category20c
from bokeh.plotting import figure
from bokeh.transform import cumsum
output_file("pie.html")
x = Counter({
'中國': 157,
'美國': 93,
'日本': 89,
'巴西': 63,
'德國': 44,
'印度': 42,
'義大利': 40,
'澳大利亞': 35,
'法國': 31,
'西班牙': 29
})
data = pd.DataFrame.from_dict(dict(x), orient='index').reset_index().rename(index=str, columns={0:'value', 'index':'country'})
data['angle'] = data['value']/sum(x.values()) * 2*pi
data['color'] = Category20c[len(x)]
p = figure(plot_height=350, title="Pie Chart", toolbar_location=None,
tools="hover", tooltips="@country: @value")
p.wedge(x=0, y=1, radius=0.4,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend='country', source=data)
p.axis.axis_label=None
p.axis.visible=False
p.grid.grid_line_color = None
show(p)
年度水果進出口
from bokeh.io import output_file, show
from bokeh.models import ColumnDataSource
from bokeh.palettes import GnBu3, OrRd3
from bokeh.plotting import figure
output_file("stacked_split.html")
fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']
years = ["2015", "2016", "2017"]
exports = {'fruits': fruits,
'2015': [2, 1, 4, 3, 2, 4],
'2016': [5, 3, 4, 2, 4, 6],
'2017': [3, 2, 4, 4, 5, 3]}
imports = {'fruits': fruits,
'2015': [-1, 0, -1, -3, -2, -1],
'2016': [-2, -1, -3, -1, -2, -2],
'2017': [-1, -2, -1, 0, -2, -2]}
p = figure(y_range=fruits, plot_height=250, x_range=(-16, 16), title="Fruit import/export, by year",
toolbar_location=None)
p.hbar_stack(years, y='fruits', height=0.9, color=GnBu3, source=ColumnDataSource(exports),
legend=["%s exports" % x for x in years])
p.hbar_stack(years, y='fruits', height=0.9, color=OrRd3, source=ColumnDataSource(imports),
legend=["%s imports" % x for x in years])
p.y_range.range_padding = 0.1
p.ygrid.grid_line_color = None
p.legend.location = "top_left"
p.axis.minor_tick_line_color = None
p.outline_line_color = None
show(p)
散點圖
from bokeh.plotting import figure, output_file, show
output_file("line.html")
p = figure(plot_width=400, plot_height=400)
p.circle([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], size=20, color="navy", alpha=0.5)
show(p)
這兩天,馬蜂窩剛被發現數據造假,這不,與馬蜂窩應應景。
六邊形圖
import numpy as np
from bokeh.io import output_file, show
from bokeh.plotting import figure
from bokeh.util.hex import axial_to_cartesian
output_file("hex_coords.html")
q = np.array([0, 0, 0, -1, -1, 1, 1])
r = np.array([0, -1, 1, 0, 1, -1, 0])
p = figure(plot_width=400, plot_height=400, toolbar_location=None) #
p.grid.visible = False # 配置網格是否可見
p.hex_tile(q, r, size=1, fill_color=["firebrick"] * 3 + ["navy"] * 4,
line_color="white", alpha=0.5)
x, y = axial_to_cartesian(q, r, 1, "pointytop")
p.text(x, y, text=["(%d, %d)" % (q, r) for (q, r) in zip(q, r)],
text_baseline="middle", text_align="center")
show(p)
這個實現挺厲害的,看了一眼就吸引了我。我在代碼中都做了一些注釋,希望對你理解有幫助。註:圓心為正中央,即直角坐標系中標籤為(0,0)的地方。
環比條形圖
from collections import OrderedDict
from math import log, sqrt
import numpy as np
import pandas as pd
from six.moves import cStringIO as StringIO
from bokeh.plotting import figure, show, output_file
antibiotics = """
bacteria, penicillin, streptomycin, neomycin, gram
結核分枝桿菌, 800, 5, 2, negative
沙門氏菌, 10, 0.8, 0.09, negative
變形桿菌, 3, 0.1, 0.1, negative
肺炎克雷伯氏菌, 850, 1.2, 1, negative
布魯氏菌, 1, 2, 0.02, negative
銅綠假單胞菌, 850, 2, 0.4, negative
大腸桿菌, 100, 0.4, 0.1, negative
產氣桿菌, 870, 1, 1.6, negative
白色葡萄球菌, 0.007, 0.1, 0.001, positive
溶血性鏈球菌, 0.001, 14, 10, positive
草綠色鏈球菌, 0.005, 10, 40, positive
肺炎雙球菌, 0.005, 11, 10, positive
"""
drug_color = OrderedDict([# 配置中間標籤名稱與顏色
("盤尼西林", "#0d3362"),
("鏈黴素", "#c64737"),
("新黴素", "black"),
])
gram_color = {
"positive": "#aeaeb8",
"negative": "#e69584",
}
# 讀取數據
df = pd.read_csv(StringIO(antibiotics),
skiprows=1,
skipinitialspace=True,
engine='python')
width = 800
height = 800
inner_radius = 90
outer_radius = 300 - 10
minr = sqrt(log(.001 * 1E4))
maxr = sqrt(log(1000 * 1E4))
a = (outer_radius - inner_radius) / (minr - maxr)
b = inner_radius - a * maxr
def rad(mic):
return a * np.sqrt(np.log(mic * 1E4)) + b
big_angle = 2.0 * np.pi / (len(df) + 1)
small_angle = big_angle / 7
# 整體配置
p = figure(plot_width=width, plot_height=height, title="",
x_axis_type=None, y_axis_type=None,
x_range=(-420, 420), y_range=(-420, 420),
min_border=0, outline_line_color="black",
background_fill_color="#f0e1d2")
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None
# annular wedges
angles = np.pi / 2 - big_angle / 2 - df.index.to_series() * big_angle #計算角度
colors = [gram_color[gram] for gram in df.gram] # 配置顏色
p.annular_wedge(
0, 0, inner_radius, outer_radius, -big_angle + angles, angles, color=colors,
)
# small wedges
p.annular_wedge(0, 0, inner_radius, rad(df.penicillin),
-big_angle + angles + 5 * small_angle, -big_angle + angles + 6 * small_angle,
color=drug_color['盤尼西林'])
p.annular_wedge(0, 0, inner_radius, rad(df.streptomycin),
-big_angle + angles + 3 * small_angle, -big_angle + angles + 4 * small_angle,
color=drug_color['鏈黴素'])
p.annular_wedge(0, 0, inner_radius, rad(df.neomycin),
-big_angle + angles + 1 * small_angle, -big_angle + angles + 2 * small_angle,
color=drug_color['新黴素'])
# 繪製大圓和標籤
labels = np.power(10.0, np.arange(-3, 4))
radii = a * np.sqrt(np.log(labels * 1E4)) + b
p.circle(0, 0, radius=radii, fill_color=None, line_color="white")
p.text(0, radii[:-1], [str(r) for r in labels[:-1]],
text_font_size="8pt", text_align="center", text_baseline="middle")
# 半徑
p.annular_wedge(0, 0, inner_radius - 10, outer_radius + 10,
-big_angle + angles, -big_angle + angles, color="black")
# 細菌標籤
xr = radii[0] * np.cos(np.array(-big_angle / 2 + angles))
yr = radii[0] * np.sin(np.array(-big_angle / 2 + angles))
label_angle = np.array(-big_angle / 2 + angles)
label_angle[label_angle < -np.pi / 2] += np.pi # easier to read labels on the left side
# 繪製各個細菌的名字
p.text(xr, yr, df.bacteria, angle=label_angle,
text_font_size="9pt", text_align="center", text_baseline="middle")
# 繪製圓形,其中數字分別為 x 軸與 y 軸標籤
p.circle([-40, -40], [-370, -390], color=list(gram_color.values()), radius=5)
# 繪製文字
p.text([-30, -30], [-370, -390], text=["Gram-" + gr for gr in gram_color.keys()],
text_font_size="7pt", text_align="left", text_baseline="middle")
# 繪製矩形,中間標籤部分。其中 -40,-40,-40 為三個矩形的 x 軸坐標。18,0,-18 為三個矩形的 y 軸坐標
p.rect([-40, -40, -40], [18, 0, -18], width=30, height=13,
color=list(drug_color.values()))
# 配置中間標籤文字、文字大小、文字對齊方式
p.text([-15, -15, -15], [18, 0, -18], text=list(drug_color),
text_font_size="9pt", text_align="left", text_baseline="middle")
output_file("burtin.html", title="burtin.py example")
show(p)
元素周期表,這個實現好牛逼啊,距離初三剛開始學化學已經很遙遠了,想當年我還是化學課代表呢!由於基本用不到化學了,這裡就不實現了。
元素周期表
真實狀態
Pyechartspyecharts 也是一個比較常用的數據可視化庫,用得也是比較多的了,是百度 echarts 庫的 python 支持。這裡也展示一下常用的圖表。文檔地址為(http://pyecharts.org/#/zh-cn/prepare?id=%E5%AE%89%E8%A3%85-pyecharts)
條形圖條形圖
from pyecharts import Bar
bar = Bar("我的第一個圖表", "這裡是副標題")
bar.add("服裝", ["襯衫", "羊毛衫", "雪紡衫", "褲子", "高跟鞋", "襪子"], [5, 20, 36, 10, 75, 90])
# bar.print_echarts_options() # 該行只為了列印配置項,方便調試時使用
bar.render() # 生成本地 HTML 文件
散點圖
from pyecharts import Polar
import random
data_1 = [(10, random.randint(1, 100)) for i in range(300)]
data_2 = [(11, random.randint(1, 100)) for i in range(300)]
polar = Polar("極坐標系-散點圖示例", width=1200, height=600)
polar.add("", data_1, type='scatter')
polar.add("", data_2, type='scatter')
polar.render()
餅圖
import random
from pyecharts import Pie
attr = ['A', 'B', 'C', 'D', 'E', 'F']
pie = Pie("餅圖示例", width=1000, height=600)
pie.add(
"",
attr,
[random.randint(0, 100) for _ in range(6)],
radius=[50, 55],
center=[25, 50],
is_random=True,
)
pie.add(
"",
attr,
[random.randint(20, 100) for _ in range(6)],
radius=[0, 45],
center=[25, 50],
rosetype="area",
)
pie.add(
"",
attr,
[random.randint(0, 100) for _ in range(6)],
radius=[50, 55],
center=[65, 50],
is_random=True,
)
pie.add(
"",
attr,
[random.randint(20, 100) for _ in range(6)],
radius=[0, 45],
center=[65, 50],
rosetype="radius",
)
pie.render()
這個是我在前面的文章中用到的圖片實例,這裡就不 po 具體數據了。
詞雲
from pyecharts import WordCloud
name = ['Sam S Club'] # 詞條
value = [10000] # 權重
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud.render()
這個是我在前面的文章中用到的圖片實例,這裡就不 po 具體數據了。
樹圖
from pyecharts import TreeMap
data = [ # 鍵值對數據結構
{
value: 1212, # 數值
# 子節點
children: [
{
# 子節點數值
value: 2323,
# 子節點名
name: 'description of this node',
children: [...],
},
{
value: 4545,
name: 'description of this node',
children: [
{
value: 5656,
name: 'description of this node',
children: [...]
},
...
]
}
]
},
...
]
treemap = TreeMap(title, width=1200, height=600) # 設置標題與寬高
treemap.add("深圳", data, is_label_show=True, label_pos='inside', label_text_size=19)
treemap.render()
地圖
from pyecharts import Map
value = [155, 10, 66, 78, 33, 80, 190, 53, 49.6]
attr = [
"福建", "山東", "北京", "上海", "甘肅", "新疆", "河南", "廣西", "西藏"
]
map = Map("Map 結合 VisualMap 示例", width=1200, height=600)
map.add(
"",
attr,
value,
maptype="china",
is_visualmap=True,
visual_text_color="#000",
)
map.render()
from pyecharts import Scatter3D
import random
data = [
[random.randint(0, 100),
random.randint(0, 100),
random.randint(0, 100)] for _ in range(80)
]
range_color = [
'#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf',
'#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']
scatter3D = Scatter3D("3D 散點圖示例", width=1200, height=600) # 配置寬高
scatter3D.add("", data, is_visualmap=True, visual_range_color=range_color) # 設置顏色等
scatter3D.render() # 渲染
大概介紹就是這樣了,三個庫的功能都挺強大的,bokeh 的中文資料會少一點,如果閱讀英文有點難度,還是建議使用 pyecharts 就好。總體也不是很難,按照文檔來修改數據都能夠直接上手使用。主要是多練習。
Python愛好者社區歷史文章大合集:
Python愛好者社區歷史文章列表(每周append更新一次)
福利:文末掃碼立刻關注公眾號,「Python愛好者社區」,開始學習Python課程:
關注後在公眾號內回復「課程」即可獲取:
小編的Python入門免費視頻課程!!!
【最新免費微課】小編的Python快速上手matplotlib可視化庫!!!
崔老師爬蟲實戰案例免費學習視頻。
陳老師數據分析報告製作免費學習視頻。
玩轉大數據分析!Spark2.X+Python 精華實戰課程免費學習視頻。