Multisim 10在差動放大電路分析中的應用

2020-12-12 電子產品世界

  在自動控制系統中,往往需將一些變化緩慢的物理量(如溫度、轉速的變化)轉換為相應的電信號,並通過直流放大器進行放大處理。直接耦合放大電路雖能放大交、直流信號,但電源電壓的波動,電晶體參數隨溫度變化等因素會導致電路出現「零點漂移」。差動放大電路是一種利用電路結構參數的對稱性有效抑制「零點漂移」的直流放大器,它對差模信號具有放大能力,而對共模信號具有抑制作用。典型差動放大電路由2個參數完全一致的單管共發射極電路組成。

本文引用地址:http://www.eepw.com.cn/article/201602/287411.htm

  Multisim 10是美國國家儀器公司(NI公司)推出的功能強大的電子電路仿真設計軟體,具有豐富的新型元器件及虛擬儀器、強大的Spice仿真、數據可視化及分析測試功能,可對模擬、數字、自動控制、射頻、單片機等各種電路進行原理圖設計、仿真分析及功能測試。Multis-im 10提供了一個強大的原理圖捕獲和交互式仿真平臺,電路的設計調試、元器件及測試儀器的調用、各種分析方法的使用直觀方便,測試參數精確可靠,是應用廣泛的優秀EDA系統。本文以典型差動放大電路為例,主要探討Multisim 10的多種分析方法在電子電路仿真設計中的應用。

  1 電路設計

  在Multisim 10中建立了如圖1所示的典型差動放大電路。T1,T2均為NPN電晶體(2N2222A),電流放大係數β設置為80。撥動開關J1,J2可選擇在差動放大電路的輸入端加入直流或交流信號。數字萬用表用於測量直流輸出電壓,示波器用於觀測交流輸入/輸出電壓波形,測量探針用於仿真時實時顯示待測支路的電壓和電流。

    

 

  實際電路中T1,T2宜選用差分對管,電晶體的靜態電流ICQ不宜超過1 mA。由ICQ可選取兩管共用的發射極電阻Re,且Re不影響差模電壓放大倍數,僅對共模信號有較強的負反饋作用,因此可以有效地抑制「零點漂移」,穩定靜態工作點。由於兩個放大器的參數不可能完全一致,因此通過電位器Rp對電路進行調零。

  基極電阻Rb1,Rb2應根據差模輸入電阻的要求選定。選取集電極電阻Rc1、Rc2時應使靜態工作點靠近負載線的中點。根據輸入端和輸出端接「地」情況的不同,差動放大電路有以下4種不同接法:雙端輸入雙端輸出、雙端輸入單端輸出、單端輸入雙端輸出、單端輸入單端輸出。

  2 靜態工作點分析

  圖1差動放大電路靜態時因輸入端不加信號,T1,T2的基極電位近似為零,因此電位器Rp兩端的電位均為-UBE(對於矽管約為-0.7 V),如電位器Rp的滑動端處於中點位置,計算靜態工作點為:

    

 

  Multisim 10中直流工作點分析方法是對電路進行進一步分析的基礎,主要用來計算電路的靜態工作點,此時電路中的交流電源將被置為零,電感短路,電容開路。進行靜態工作點分析時需將電路的節點編號顯示在電路圖上(見圖1),並需要選擇待分析的節點編號。依次執行Simulate/Analyses/DC Operating Point(直流工作點)分析命令,設置圖1中1,2,u01,u02,Iprobe2,Iprobe3為輸出節點(變量),得到圖2所示的靜態工作點分析結果:Ie=1.48 mA,Ic1=Ic2=0.732 mA,Uc1=Uc2=4.68 V,所測參數與式(1)~式(3)分析結果基本一致。

    

 

  3 參數掃描分析

  參數掃描分析用來研究電路中某個元件的參數在一定範圍內變化時對電路性能的影響。選擇圖1中電阻Re為參數掃描分析元件,分析其阻值變化對電路輸出波形的影響。圖1差動放大電路設置為交流信號輸入方式,設置正弦波輸入信號頻率為1 kHz、幅值為150 mV,依次執行Simulate/Analyses/Parametet Sweep(參數掃描)命令,設置掃描方式為Linear(線性掃描),設置電阻Re掃描起始值為5 kΩ,掃描終值為7.5 kΩ,掃描點數為3,設置輸出節點為u01,得到如圖3(a)所示參數掃描分析結果。當Re=5 kΩ時,由於T1管的靜態工作點偏高,其輸出電壓u01產生了飽和失真。可見,Re阻值的變化影響差動放大電路的靜態工作點。

    

 

  4 溫度掃描分析

  溫度掃描分析用來研究溫度變化對電路性能的影響,相當於在不同的工作溫度下進行多次仿真。

  圖1差動放大電路設置為交流信號輸入方式,設置正弦波輸入信號頻率為1 kHz、幅值為10 mV,依次執行Simulate/Analyses/Tempera-ture Sweep(溫度掃描)命令,設置掃描方式為List(取列表值掃描),設置掃描溫度為0℃,27℃,120℃,設置輸出節點為u01得到如圖3(b)所示溫度掃描分析結果。隨著溫度的升高,T1管的輸出電壓幅值變小。可見,故溫度變化會影響單管放大電路的靜態工作點。

  由於溫度的變化與T1,T2參數的變化相同,集電極靜態電流、電位的變化也相等,故輸出電壓u0的變化為零,可將溫度變化等效為共模信號,因此差動放大電路對溫度變化產生的「零點漂移」具有抑制作用。

  5 動態參數分析

  圖1電路的差模電壓放大倍數Aud與單管共射電路相同,且Aud由輸出方式決定,而與輸入方式無關。

  計算雙端輸出差模放大倍數為:

    

 

  5.1 傳遞函數分析

  依據傳遞函數分析可計算電路中輸入源與兩個節點的輸出電壓或一個電流輸出變量之間的直流小信號傳遞函數,同樣可以用於計算輸入和輸出的阻抗。

  將圖1電路分別設置為直流差模、直流共模信號輸入方式,依次執行Simulate/Analyses/Transfer Function Analysis(傳遞函數分析)命令,設置V3為輸入電壓源,設置輸出節點為u01,分別得到如圖4(a),4(b)所示傳遞函數分析結果。由圖4測得Aud1=-12.4,Auc1=-0.64,所測參數與式(5)、式(6)分析結果基本一致。

    

 

  5.2 直流信號測試

  撥動開關J1,J2,在圖1電路中兩輸入端加入直流差模信號ui1=+0.1V,ui2=-0.1V,通過數字萬用表測得uo1=2.246V,uo2=7.115V。計算Aud=(2.246-7.115)/0.2=-24.345,Aud1=(2.246-4.68)/0.2=-12.17,Aud2=(7.115-4.68)/0.2=12.175。在圖1電路中兩輸入端加入直流共模信號ui1=ui2=0.1 V,通過數字萬用表測得uo1=uo2=4.616 V。計算Auc1=Auc2=(4.616-4.68)/0.1=-0.64,Auc為零。直流信號測試參數與式(4)~式(6)分析結果基本一致。

  5.3 交流信號測試

  5.3.1 單端輸出

  在圖1電路中兩輸入端分別加入交流差模信號(函數信號發生器的輸出端接ui1、地端接ui2,構成單端輸入方式)及交流共模信號(函數信號發生器的輸出端同時接ui1,ui2),設置正弦波輸入信號頻率為1 kHz、幅值為10 mV。

  通過示波器觀測差模、共模信號輸入波形和單端輸出波形如圖5所示。由示波器測得:差模單端輸出電壓的幅值約為119mV,Aud2=11.9;共模單端輸出電壓的幅值約為6.4 mV,Auc1=-0.64。單端輸出測試參數與式(5)、式(6)分析結果基本一致。

    

 

  5.3.2 雙端輸出

  由於Multisim 10提供的示波器不能直接測量uo兩端的電壓波形,因此需通過後處理器對雙端輸出電壓進行觀測。在進行後處理之前需要對電路進行瞬態分析,然後將瞬態分析結果進行後處理。瞬態分析是一種非線性電路分析方法,可用來分析電路中某一節點的時域響應。在進行瞬態分析時,Multisim 10會根據給定的時間範圍,選擇合理的時間步長,計算所選節點在每個時間點的輸出電壓,通常以節點電壓波形作為瞬態分析的結果。圖1電路設置為交流差模信號輸入方式,設置正弦波輸入信號頻率為1 kHz、幅值為10 mV,依次執行Simulate/An-alyses/Transient Analysis(瞬態分析)命令,選擇圖1電路中節點uo1,uo2的電壓作為輸出變量,得到如圖6所示的瞬態分析結果。可見,uo1,uo2大小相等、相位相反。後處理器(Postprocessor)是專門對仿真結果進行進一步計算處理的工具,不僅能對仿真得到的數據進行各種運算,還能對多個曲線或數據之間進行數學運算處理,並將結果繪製到曲線圖或圖表中,繪製的結果表現為「軌跡線」的形式。

  依次執行Simulate/Postprocessor(後處理器)命令,選擇對圖6瞬態分析結果中兩個節點(uo1,uo2)輸出電壓進行減法運算,得到的差模信號雙端輸出電壓uo波形如圖7所示。由圖7可測得uo的幅值約為242 mV,計算Aud=-24.2,雙端輸出測試參數與式(4)分析結果基本一致。圖1電路設置為交流共模信號輸入方式,通過瞬態分析和後處理器測得共模信號雙端輸出電壓uo幅值僅為0.062μV,Auc=6.2×10-6。可見,差動放大電路對共模信號具有很好的抑制作用。

    

 

  6 結語

  Multisim 10具有強大的電路設計和仿真分析功能,以典型差動放大電路為例,利用直流工作點分析和傳遞函數分析對電路的靜態工作點、差模及共模電壓放大倍數的仿真數據和真實值進行比較,利用參數掃描及溫度掃描分析了電路參數變化對輸出波形的影響,利用瞬態分析、後處理器分析對實際應用中難以觀測的雙端輸出電壓波形進行了測試,電路各項參數指標均與真實值相符,提高了電路的設計和分析效率。研究表明,利用Multisim 10進行電子電路計算機仿真設計,不僅速度快,效率高,參數測試精確可靠,而且可廣泛應用於電氣控制、電子信息、通信工程、自動化等各種電路設計領域。

相關焦點

  • 經典差動放大器應用電路詳解
    經典的四電阻差動放大器 (Differential amplifier,差分放大器) 似乎很簡單,但其在電路中的性能不佳。本文從實際生產設計出發,討論了分立式電阻、濾波、交流共模抑制和高噪聲增益的不足之處。 差分放大電路具有電路對稱性的特點,此特點可以起到穩定工作點的作用,被廣泛用於直接耦合電路和測量電路的輸入級。
  • 幾個經典差動放大器應用電路詳解
    幾個經典差動放大器應用電路詳解 秩名 發表於 2014-09-01 11:22:08   簡介   經典的四電阻差動放大器
  • Multisim 10在單管共射放大電路教學中的應用
    Multisim 10在單管共射放大電路教學中的應用 曹鴻霞,冒曉莉,張 發表於 2011-08-18 11:56:14   摘要:利用Multisim
  • 差分放大電路分析
    差分放大電路又稱為差動放大電路,當該電路的兩個輸入端的電壓有差別時,輸出電壓才有變動,因此稱為差動。差分放大電路是由靜態工作點穩定的放大電路演變而來的。 集成電路中電路都是用的各種恆流源作偏置,偏置電路中電流都是恆定不變的,所有的參數計算都是圍繞這個恆定的電流。
  • 基於Multisim的三極體放大電路仿真分析
    三極體放大電路是含有半導體器件三極體的放大電路,是構成各種實用放大電路的基礎電路,是《模擬電子技術》課程中的重點內容。在課程學習中,一再向學生強調,放大電路放大的對象是動態信號,但放大電路能進行放大的前提是必須設置合適的靜態工作點,如果靜態工作點不合適,輸出的波形將會出現失真,這樣的「放大」就毫無意義。
  • 差分放大電路特點_差分放大電路的作用
    差分放大電路簡介   差分放大電路利用電路參數的對稱性和負反饋作用,有效地穩定靜態工作點,以放大差模信號抑制共模信號為顯著特徵,廣泛應用於直接耦合電路和測量電路的輸入級。但是差分放大電路結構複雜、分析繁瑣,特別是其對差模輸入和共模輸入信號有不同的分析方法,難以理解,因而一直是模擬電子技術中的難點。差分放大電路:按輸入輸出方式分:有雙端輸入雙端輸出、雙端輸入單端輸出、單端輸入雙端輸出和單端輸入單端輸出四種類型。按共模負反饋的形式分:有典型電路和射極帶恆流源的電路兩種。
  • 差分放大電路的CMRR與輸入電阻分析
    差分放大器和儀表放大器的CMRR主要受集成的差分放大電阻影響。因此掌握Trim電阻精度的工藝是製作儀放,差放的核心技術,可以參考Bruce Trump的博文「差動放大器—良好匹配電阻器不可或缺的器件」。
  • 深入了解差動放大器電路設計原理 —電路圖天天讀(117)
    經典的四電阻差動放大器似乎很簡單,但其在電路中的性能不佳。本文從實際生產設計出發,討論了分立式電阻、濾波、交流共模抑制和高噪聲增益的不足之處。
  • 基於Multisim的集成放大運算器仿真分析
    摘要:為了了解Multisim在實際電路設計與仿真中的應用,在此以集成運算放大器為研究對象,基於Multisim對其進行了仿真分析
  • 長尾式差分放大電路分析
    打開APP 長尾式差分放大電路分析 佚名 發表於 2010-04-13 11:52:55 長尾式差分放大電路分析長尾式電路:如圖所示為典型的差分放大電路,由於Re接負載電源-VEE,拖一個尾巴,故稱為長尾式電路。
  • 深入了解差動放大器
    ,差分放大器)似乎很簡單,但其在電路中的性能不佳。  大學裡的電子學課程說明了理想運算放大器的應用,包括反相和同相放大器,然後將它們進行組合,構建差動放大器。圖1所示的經典四電阻差動放大器非常有用,教科書和講座40多年來一直在介紹該器件。
  • 各類放大器電路設計圖集錦
    一、差動放大器應用電路本文引用地址:http://www.eepw.com.cn/article/201610/308287.htm經典的四電阻差動
  • 差分放大電路單端輸出和雙端輸出區別以及應用
    什麼是差分放大電路   差分放大電路利用電路參數的對稱性和負反饋作用,有效地穩定靜態工作點,以放大差模信號抑制共模信號為顯著特徵,廣泛應用於直接耦合電路和測量電路的輸入級。但是差分放大電路結構複雜、分析繁瑣,特別是其對差模輸入和共模輸入信號有不同的分析方法,難以理解,因而一直是模擬電子技術中的難點。
  • 一文弄懂差分信號及差分放大電路的作用
    差分放大電路在數顯表應用很多,昌暉儀表以圖文形式簡單介紹差分信號、單端信號的概念及差分放大電路的作用,方便大家對差分放大電路相關知識有所了解。 1、什麼是單端信號?什麼是差分信號?
  • 一種典型的差分放大電路設計與測試
    重點講述差分濾波器的設計和計算, 指出與單端放大電路在設計和測試中的不同之處,並結合實際工作中的經驗,就直流信號和交流信號的測試分別給出了一種簡易案例。與普通單端放大器相比, 差分放大器可以有效抑制輸入信號中的共模噪聲和地線電平電壓浮動對電路的影響, 因此, 在工業應用中廣受青睞。
  • 差分放大器工作原理和基本電路形式
    差動放大器電路又叫差分電路,它可以有效地放大交流信號,而且還能夠有效地減小由於電源波動和電晶體隨溫度變化多引起的零點漂移。被大量的應用於集成運放電路,常被用作多級放大器的前置級。 差分放大器工作原理和基本電路形式 差動放大器原理: 差動放大電路的基本形式對電路的要求是:兩個電路的參數完全對稱兩個管子的溫度特性也完全對稱。 它的工作原理是:當輸入信號Ui=0時,則兩管的電流相等,兩管的集電極電位也相等,所以輸出電壓Uo=UC1-UC2=0。
  • 值得收藏的精品電子電路知識:各种放大器電路分析薈萃
    在非常多的電路中,都有放大器電路,所以,我總結薈萃了這方面的資料,配合典型圖例,分兩次分享給大家,歡迎留言。一,【電壓放大器】。射極輸出器只對電流有放大作用,對電壓沒有放大作用,電壓放大倍數稍小於1。但是它的輸入阻抗很高,輸出阻抗很低。它是一個很好的阻抗變換器,被廣泛地應用於電子電路中。
  • 4種常見恆流源電路分析及應用
    四種恆流源電路分析:在改進型差動放大器中,用恆流源取代射極電阻RE,既為差動放大電路設置了合適的靜態工作電流,又大大增強了共模負反饋作用,使電路具有了更強的抑制共模信號的能力,且不需要很高的電源電壓,所以,恆流源和差動放大電路簡直是一對絕配!
  • 差分放大電路的四種接法
    打開APP 差分放大電路的四種接法 本站 發表於 2010-04-13 12:08:32 1.雙端輸入單端輸出電路 電路如右圖所示,為雙端輸入、單端輸出差分放大電路。
  • 放大電路的動態分析
    我們把加進的輸入交流信號時的狀態稱為動態,這一節我們主要學習放大電路動態分析的兩種方法:圖解法和微變等效電路法。   通過上述思想我們就可以把含有非線性元件(如三極體)的放大電路,轉換為我們熟悉的線性電路,這樣我們就可以利用電路分析的各種方法來求解了。