2016年8月29日訊 /生物谷BIOON/ --癌症研究人員經過長期觀察發現多種抗癌藥物組合的治療效果好於單種藥物治療。最近來自美國約翰斯霍普金斯的科學家們進行了一項研究,他們通過代謝組學的方法追蹤癌細胞非常依賴的一些代謝途徑,為開發特異性靶向這些途徑的抗癌藥物組合提供了科學證據,這種藥物組合中包括約翰斯霍普金斯研究人員開發的一種納米顆粒藥物。
"我們不能只從一個角度對癌細胞進行打擊,在癌症治療過程中學會如何對藥物進行組合靶向正確的信號途徑是非常重要的。"約翰斯霍普金斯大學醫學院的Anne Le教授這樣說道。
相關研究結果發表在國際學術期刊PNAS上。
在這項研究中,研究人員首先從一種叫做BPTES的試驗性藥物開始,在此之前BPTES已經在多種癌症動物模型中得到檢測,都不能幫助減小腫瘤尺寸。科學家們認為這可能是由於在使用傳統給藥方法的時候腫瘤組織中的藥物濃度不夠高而導致的。
有了這樣的想法,研究人員選擇將BPTES包裝到一種由聚乙二醇包被的納米顆粒膠囊中。據科學家所說,這種納米顆粒能夠幫助藥物穿過靠近癌細胞的毛細血管,使藥物在腫瘤組織中的停留時間更長。他們將這種納米顆粒藥物注射到移植了人類胰腺腫瘤的小鼠模型體內。
經過觀察發現一段時間之後接受了納米顆粒藥物治療的小鼠腫瘤縮小一半,而沒有使用納米運輸系統的藥物沒有改變腫瘤大小。隨後研究人員在縮小之後的腫瘤中繼續尋找促進腫瘤生長的主要代謝途徑,他們給小鼠模型注射了帶標記的穀氨醯胺和葡萄糖,隨後追蹤這些物質在小鼠體內的分解,發現腫瘤細胞中含有大量的乳酸,這是葡萄糖代謝途徑的一種終產物。
了解到這一信息之後,研究人員將抗糖尿病藥物二甲雙胍與膠囊化的BPTES聯合使用,用以治療移植了人類胰腺腫瘤的小鼠,結果表明藥物組合使腫瘤縮小了至少50%,效果好於單種藥物治療。
在之前研究中研究人員並未發現二甲雙胍對胰腺癌病人有任何治療效果,而將二甲雙胍與其他藥物聯合使用可能同時關閉了腫瘤細胞中多條關鍵信號途徑,從而起到更好的治療效果。(生物谷Bioon.com)
Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer
Amira Elgogarya,1, Qingguo Xub,c,1, Brad Poorea, Jesse Altd, Sarah C. Zimmermannd,e, Liang Zhaof, Jie Fub,c, Baiwei Chenc, Shiyu Xiac,g, Yanfei Liub,c,2, Marc Neisserc, Christopher Nguyena, Ramon Leea, Joshua K. Parka, Juvenal Reyesh, Thomas Hartungf,i, Camilo Rojasd,j, Rana Raisd,e, Takashi Tsukamotod,e, Gregg L. Semenzah,k,l,m,n,3, Justin Hanesb,c,g,k,o,p,q,3, Barbara S. Slusherd,e,k,r,s,3, and Anne Lea,k,3
Targeting glutamine metabolism via pharmacological inhibition of glutaminase has been translated into clinical trials as a novel cancer therapy, but available drugs lack optimal safety and efficacy. In this study, we used a proprietary emulsification process to encapsulate bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a selective but relatively insoluble glutaminase inhibitor, in nanoparticles. BPTES nanoparticles demonstrated improved pharmacokinetics and efficacy compared with unencapsulated BPTES. In addition, BPTES nanoparticles had no effect on the plasma levels of liver enzymes in contrast to CB-839, a glutaminase inhibitor that is currently in clinical trials. In a mouse model using orthotopic transplantation of patient-derived pancreatic tumor tissue, BPTES nanoparticle monotherapy led to modest antitumor effects. Using the HypoxCR reporter in vivo, we found that glutaminase inhibition reduced tumor growth by specifically targeting proliferating cancer cells but did not affect hypoxic, noncycling cells. Metabolomics analyses revealed that surviving tumor cells following glutaminase inhibition were reliant on glycolysis and glycogen synthesis. Based on these findings, metformin was selected for combination therapy with BPTES nanoparticles, which resulted in significantly greater pancreatic tumor reduction than either treatment alone. Thus, targeting of multiple metabolic pathways, including effective inhibition of glutaminase by nanoparticle drug delivery, holds promise as a novel therapy for pancreatic cancer.