1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法裡,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、方程式:含有未知數的等式叫方程式。
9、一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
22、比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3。比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
23、比例:表示兩個比相等的式子叫做比例。如3:6=9:18
24、比例的基本性質:在比例裡,兩外項之積等於兩內項之積。
25、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
26、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關係就叫做正比例關係。如:y/x=k( k一定)或kx=y
27、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關係就叫做反比例關係。 如:x×y = k( k一定)或k / x = y
28、百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
29、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
30、把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
31、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
32、把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
33、小數化成分數和把分數化成小數的化法。
34、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
35、互質數: 公約數只有1的兩個數,叫做互質數。
36、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
37、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
38、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
39、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
40、分數計算到最後,得數必須化成最簡分數。
41、個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
42、約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
43、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
44、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
45、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
46、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
47、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
48、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
49、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重複出現,這樣的小數叫做循環小數。如3。 141414
50、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重複出現,這樣的小數叫做不循環小數。如圓周率:3。 141592654
51、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重複出現,這樣的小數叫做無限不循環小數。如3。 141592654……
52、什麼叫代數? 代數就是用字母代替數。
53、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c
掃碼加吒吒老師好友
獲取公式大全Word列印版
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法裡,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
長方形
C周長 S面積 a、b邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
三角形的內角和=180度
平行四邊形
s面積 a底 h高
面積=底×高
s=ah
梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
直徑=半徑×2(d=2r)
半徑=直徑÷2(r=d÷2)
圓的周長=圓周率×直徑=圓周率×半徑×2
C=πd =2πr
圓的面積=圓周率×半徑×半徑
S=πr×r=πr2
長方體
V:體積 s:面積 a:長 b:寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
正方體
V:體積 a:稜長
表面積=稜長×稜長×6
S表=a×a×6
體積=稜長×稜長×稜長
V=a×a×a
圓柱體
v:體積 h:高 s:底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
圓錐體
v:體積 h:高 s:底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
**補充
球的表面積S=4πr2
球的體積V=4/3πr3
(r為球的半徑)
1公裡=1千米=1000米
1米=10分米
1分米=10釐米
1釐米=10毫米
1毫米=1000微米
1微米=1000納米
1平方米=100平方分米
1平方分米=100平方釐米
1平方釐米=100平方毫米
1立方米=1000立方分米
1立方分米=1000立方釐米
1立方釐米=1000立方毫米
1噸=1000千克
1千克=1000克=1公斤=2市斤
1平方千米=100公頃=1000000平方米
1公頃=10000平方米
1公頃=15畝
1畝 ≈666.67平方米
1立方米=1000升
1升=1立方分米=1000毫升
1毫升=1立方釐米
1元=10角
1角=10分
1元=100分
1世紀=100年
1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,閏年2月29天
平年全年365天,閏年全年366天
1日=24小時
1時=60分=3600秒
1分=60秒
每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
速度×時間=路程
路程÷速度=時間
路程÷時間=速度
單價×數量=總價
總價÷單價=數量
總價÷數量=單價
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
加數+加數=和
和 - 一個加數=另一個加數
被減數-減數=差
被減數-差=減數
差+減數=被減數
因數×因數=積
積÷一個因數=另一個因數
被除數÷除數=商
被除數÷商=除數
商×除數=被除數
和倍問題:
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題:
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
盈虧問題:
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題:
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題:
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
濃度問題:
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題:
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-5%)
工程問題:
工作效率×工作時間=工作總量
工作總量÷工作時間=工作效率
工作總量÷工作效率=工作時間
1÷工作時間=單位時間內完成工作總量的幾分之幾
1÷單位時間能完成的幾分之幾=工作時間
流水問題:
(1)一般公式:
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
(2)兩船相向航行的公式: 甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度
植樹問題:
(1)非封閉線路上的植樹問題主要可分為以下三種情形:
如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
a.如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
b.如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
c.封閉線路上的植樹問題的數量關係如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
4.四邊形
5.圓
掃碼加吒吒老師好友
獲取公式大全Word列印版
戳閱讀原文,有獎試聽【新東方體驗課】