機器學習算法比較

2021-02-13 慧天地

機器學習算法太多了,分類、回歸、聚類、推薦、圖像識別領域等等,要想找到一個合適算法真的不容易,所以在實際應用中,我們一般都是採用啟發式學習方式來實驗。通常最開始我們都會選擇大家普遍認同的算法,諸如SVM,GBDT,Adaboost,現在深度學習很火熱,神經網絡也是一個不錯的選擇。假如你在乎精度(accuracy)的話,最好的方法就是通過交叉驗證(cross-validation)對各個算法一個個地進行測試,進行比較,然後調整參數確保每個算法達到最優解,最後選擇最好的一個。但是如果你只是在尋找一個「足夠好」的算法來解決你的問題,或者這裡有些技巧可以參考,下面來分析下各個算法的優缺點,基於算法的優缺點,更易於我們去選擇它。

在統計學中,一個模型好壞,是根據偏差和方差來衡量的,所以我們先來普及一下偏差(bias)和方差(variance):

偏差:描述的是預測值(估計值)的期望E』與真實值Y之間的差距。偏差越大,越偏離真實數據。

 

方差:描述的是預測值P的變化範圍,離散程度,是預測值的方差,也就是離其期望值E的距離。方差越大,數據的分布越分散。

模型的真實誤差是兩者之和,如下:

通常情況下,如果是小訓練集,高偏差/低方差的分類器(例如,樸素貝葉斯NB)要比低偏差/高方差大分類的優勢大(例如,KNN),因為後者會發生過擬合(overfiting)。然而,隨著你訓練集的增長,模型對於原數據的預測能力就越好,偏差就會降低,此時低偏差/高方差的分類器就會漸漸的表現其優勢(因為它們有較低的漸近誤差),而高偏差分類器這時已經不足以提供準確的模型了。

當然,你也可以認為這是生成模型(如NB)與判別模型(如KNN)的一個區別。

為什麼說樸素貝葉斯是高偏差低方差?


以下內容引自知乎:

首先,假設你知道訓練集和測試集的關係。簡單來講是我們要在訓練集上學習一個模型,然後拿到測試集去用,效果好不好要根據測試集的錯誤率來衡量。但很多時候,我們只能假設測試集和訓練集的是符合同一個數據分布的,但卻拿不到真正的測試數據。這時候怎麼在只看到訓練錯誤率的情況下,去衡量測試錯誤率呢?

由於訓練樣本很少(至少不足夠多),所以通過訓練集得到的模型,總不是真正正確的。(就算在訓練集上正確率100%,也不能說明它刻畫了真實的數據分布,要知道刻畫真實的數據分布才是我們的目的,而不是只刻畫訓練集的有限的數據點)。而且,實際中,訓練樣本往往還有一定的噪音誤差,所以如果太追求在訓練集上的完美而採用一個很複雜的模型,會使得模型把訓練集裡面的誤差都當成了真實的數據分布特徵,從而得到錯誤的數據分布估計。這樣的話,到了真正的測試集上就錯的一塌糊塗了(這種現象叫過擬合)。但是也不能用太簡單的模型,否則在數據分布比較複雜的時候,模型就不足以刻畫數據分布了(體現為連在訓練集上的錯誤率都很高,這種現象較欠擬合)。過擬合表明採用的模型比真實的數據分布更複雜,而欠擬合表示採用的模型比真實的數據分布要簡單。

在統計學習框架下,大家刻畫模型複雜度的時候,有這麼個觀點,認為Error = Bias + Variance。這裡的Error大概可以理解為模型的預測錯誤率,是有兩部分組成的,一部分是由於模型太簡單而帶來的估計不準確的部分(Bias),另一部分是由於模型太複雜而帶來的更大的變化空間和不確定性(Variance)。

所以,這樣就容易分析樸素貝葉斯了。它簡單的假設了各個數據之間是無關的,是一個被嚴重簡化了的模型。所以,對於這樣一個簡單模型,大部分場合都會Bias部分大於Variance部分,也就是說高偏差而低方差。

在實際中,為了讓Error儘量小,我們在選擇模型的時候需要平衡Bias和Variance所佔的比例,也就是平衡over-fitting和under-fitting。

偏差、方差、模型複雜度三者之間的關係使用下圖表示會更容易理解:

當模型複雜度上升的時候,偏差會逐漸變小,而方差會逐漸變大。

1. 樸素貝葉斯

樸素貝葉斯屬於生成式模型(關於生成模型和判別式模型,主要還是在於是否需要求聯合分布),比較簡單,你只需做一堆計數即可。如果注有條件獨立性假設(一個比較嚴格的條件),樸素貝葉斯分類器的收斂速度將快於判別模型,比如邏輯回歸,所以你只需要較少的訓練數據即可。即使NB條件獨立假設不成立,NB分類器在實踐中仍然表現的很出色。它的主要缺點是它不能學習特徵間的相互作用,用mRMR中R來講,就是特徵冗餘。引用一個比較經典的例子,比如,雖然你喜歡Brad Pitt和Tom Cruise的電影,但是它不能學習出你不喜歡他們在一起演的電影。

優點:

樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。

對小規模的數據表現很好,能個處理多分類任務,適合增量式訓練;

對缺失數據不太敏感,算法也比較簡單,常用於文本分類。

缺點:

需要計算先驗概率;

分類決策存在錯誤率;

對輸入數據的表達形式很敏感。


2. Logistic Regression(邏輯回歸)

邏輯回歸屬於判別式模型,同時伴有很多模型正則化的方法(L0, L1,L2,etc),而且你不必像在用樸素貝葉斯那樣擔心你的特徵是否相關。與決策樹、SVM相比,你還會得到一個不錯的概率解釋,你甚至可以輕鬆地利用新數據來更新模型(使用在線梯度下降算法-online gradient descent)。如果你需要一個概率架構(比如,簡單地調節分類閾值,指明不確定性,或者是要獲得置信區間),或者你希望以後將更多的訓練數據快速整合到模型中去,那麼使用它吧。

Sigmoid函數:

優點:

實現簡單,廣泛的應用於工業問題上;

分類時計算量非常小,速度很快,存儲資源低;

便利的觀測樣本概率分數;

對邏輯回歸而言,多重共線性並不是問題,它可以結合L2正則化來解決該問題。

缺點:

當特徵空間很大時,邏輯回歸的性能不是很好;

容易欠擬合,一般準確度不太高

不能很好地處理大量多類特徵或變量;

只能處理兩分類問題(在此基礎上衍生出來的softmax可以用於多分類),且必須線性可分;

對於非線性特徵,需要進行轉換。


3. 線性回歸

線性回歸是用於回歸的,它不像Logistic回歸那樣用於分類,其基本思想是用梯度下降法對最小二乘法形式的誤差函數進行優化,當然也可以用normal equation直接求得參數的解,結果為:

而在LWLR(局部加權線性回歸)中,參數的計算表達式為:

由此可見LWLR與LR不同,LWLR是一個非參數模型,因為每次進行回歸計算都要遍歷訓練樣本至少一次。

優點:實現簡單,計算簡單;

缺點:不能擬合非線性數據。


4. 最近鄰算法——KNN

KNN即最近鄰算法,其主要過程為:

1) 計算訓練樣本和測試樣本中每個樣本點的距離(常見的距離度量有歐式距離,馬氏距離等);

2) 對上面所有的距離值進行排序(升序);

3) 選前k個最小距離的樣本;

4) 根據這k個樣本的標籤進行投票,得到最後的分類類別。

如何選擇一個最佳的K值,這取決於數據。一般情況下,在分類時較大的K值能夠減小噪聲的影響,但會使類別之間的界限變得模糊。一個較好的K值可通過各種啟發式技術來獲取,比如,交叉驗證。另外噪聲和非相關性特徵向量的存在會使K近鄰算法的準確性減小。近鄰算法具有較強的一致性結果,隨著數據趨於無限,算法保證錯誤率不會超過貝葉斯算法錯誤率的兩倍。對於一些好的K值,K近鄰保證錯誤率不會超過貝葉斯理論誤差率。

優點:

理論成熟,思想簡單,既可以用來做分類也可以用來做回歸;

可用於非線性分類;

訓練時間複雜度為O(n);

對數據沒有假設,準確度高,對outlier不敏感。

缺點:

計算量大(體現在距離計算上);

樣本不平衡問題(即有些類別的樣本數量很多,而其它樣本的數量很少)效果差;

需要大量內存。


5. 決策樹

決策樹的一大優勢就是易於解釋。它可以毫無壓力地處理特徵間的交互關係並且是非參數化的,因此你不必擔心異常值或者數據是否線性可分(舉個例子,決策樹能輕鬆處理好類別A在某個特徵維度x的末端,類別B在中間,然後類別A又出現在特徵維度x前端的情況)。它的缺點之一就是不支持在線學習,於是在新樣本到來後,決策樹需要全部重建。另一個缺點就是容易出現過擬合,但這也就是諸如隨機森林RF(或提升樹boosted tree)之類的集成方法的切入點。另外,隨機森林經常是很多分類問題的贏家(通常比支持向量機好上那麼一丁點),它訓練快速並且可調,同時你無須擔心要像支持向量機那樣調一大堆參數,所以在以前都一直很受歡迎。

決策樹中很重要的一點就是選擇一個屬性進行分枝,因此要注意一下信息增益的計算公式,並深入理解它。

信息熵的計算公式如下:

其中的n代表有n個分類類別(比如假設是二類問題,那麼n=2)。分別計算這2類樣本在總樣本中出現的概率p1和p2,這樣就可以計算出未選中屬性分枝前的信息熵。

現在選中一個屬性xi用來進行分枝,此時分枝規則是:如果xi=v的話,將樣本分到樹的一個分支;如果不相等則進入另一個分支。很顯然,分支中的樣本很有可能包括2個類別,分別計算這2個分支的熵H1和H2,計算出分枝後的總信息熵H'=p1 * H1+p2 * H2,則此時的信息增益ΔH = H - H』。以信息增益為原則,把所有的屬性都測試一邊,選擇一個使增益最大的屬性作為本次分枝屬性。

優點:

計算簡單,易於理解,可解釋性強;

比較適合處理有缺失屬性的樣本;

能夠處理不相關的特徵;

在相對短的時間內能夠對大型數據源做出可行且效果良好的結果。

缺點:

容易發生過擬合(隨機森林可以很大程度上減少過擬合);

忽略了數據之間的相關性;

對於那些各類別樣本數量不一致的數據,在決策樹當中,信息增益的結果偏向於那些具有更多數值的特徵(只要是使用了信息增益,都有這個缺點,如RF)。


5.1 Adaboosting

Adaboost是一種加和模型,每個模型都是基於上一次模型的錯誤率來建立的,過分關注分錯的樣本,而對正確分類的樣本減少關注度,逐次迭代之後,可以得到一個相對較好的模型。該算法是一種典型的boosting算法,其加和理論的優勢可以使用Hoeffding不等式得以解釋。有興趣的同學可以閱讀下筆者後面寫的這篇文章Adaboost - 新的角度理解權值更新策略:

(http://www.csuldw.com/2016/08/28/2016-08-28-adaboost-algorithm-theory/)

優點:

Adaboost是一種有很高精度的分類器。

可以使用各種方法構建子分類器,Adaboost算法提供的是框架。

當使用簡單分類器時,計算出的結果是可以理解的,並且弱分類器的構造極其簡單。

簡單,不用做特徵篩選。

不易發生overfitting。

關於隨機森林和GBDT等組合算法,參考這篇文章——機器學習-組合算法總結:

(http://www.csuldw.com/2015/07/22/2015-07-22%20%20ensemble/)

缺點:對outlier比較敏感


6. SVM支持向量機

支持向量機,一個經久不衰的算法,高準確率,為避免過擬合提供了很好的理論保證,而且就算數據在原特徵空間線性不可分,只要給個合適的核函數,它就能運行得很好。在動輒超高維的文本分類問題中特別受歡迎。可惜內存消耗大,難以解釋,運行和調參也有些煩人,而隨機森林卻剛好避開了這些缺點,比較實用。

優點:

可以解決高維問題,即大型特徵空間;

能夠處理非線性特徵的相互作用;

無需依賴整個數據;

可以提高泛化能力;

缺點:

當觀測樣本很多時,效率並不是很高;

對非線性問題沒有通用解決方案,有時候很難找到一個合適的核函數;

對缺失數據敏感;

對於核的選擇也是有技巧的(libsvm中自帶了四種核函數:線性核、多項式核、RBF以及sigmoid核):

第一,如果樣本數量小於特徵數,那麼就沒必要選擇非線性核,簡單的使用線性核就可以了;

第二,如果樣本數量大於特徵數目,這時可以使用非線性核,將樣本映射到更高維度,一般可以得到更好的結果;

第三,如果樣本數目和特徵數目相等,該情況可以使用非線性核,原理和第二種一樣。

對於第一種情況,也可以先對數據進行降維,然後使用非線性核,這也是一種方法。


7. 人工神經網絡的優缺點

優點:

分類的準確度高;

並行分布處理能力強,分布存儲及學習能力強,

對噪聲神經有較強的魯棒性和容錯能力,能充分逼近複雜的非線性關係;

具備聯想記憶的功能。

缺點:

神經網絡需要大量的參數,如網絡拓撲結構、權值和閾值的初始值;

不能觀察之間的學習過程,輸出結果難以解釋,會影響到結果的可信度和可接受程度;

學習時間過長,甚至可能達不到學習的目的。

8. K-Means聚類

之前筆者寫過一篇關於K-Means聚類的文章,參見機器學習算法-K-means聚類:(http://www.csuldw.com/2015/06/03/2015-06-03-ml-algorithm-K-means/)。關於K-Means的推導,裡面可是有大學問的,蘊含著強大的EM思想。

優點:

算法簡單,容易實現 ;

對處理大數據集,該算法是相對可伸縮的和高效率的,因為它的複雜度大約是O(nkt),其中n是所有對象的數目,k是簇的數目,t是迭代的次數。通常k<<n。這個算法通常局部收斂。

算法嘗試找出使平方誤差函數值最小的k個劃分。當簇是密集的、球狀或團狀的,且簇與簇之間區別明顯時,聚類效果較好。

缺點:

對數據類型要求較高,適合數值型數據;

可能收斂到局部最小值,在大規模數據上收斂較慢

K值比較難以選取;

對初值的簇心值敏感,對於不同的初始值,可能會導致不同的聚類結果;

不適合於發現非凸面形狀的簇,或者大小差別很大的簇。

對於」噪聲」和孤立點數據敏感,少量的該類數據能夠對平均值產生極大影響。

之前筆者翻譯過一些國外的文章,其中有一篇文章中給出了一個簡單的算法選擇技巧:

1. 首當其衝應該選擇的就是邏輯回歸,如果它的效果不怎麼樣,那麼可以將它的結果作為基準來參考,在基礎上與其他算法進行比較;

2. 然後試試決策樹(隨機森林)看看是否可以大幅度提升你的模型性能。即便最後你並沒有把它當做為最終模型,你也可以使用隨機森林來移除噪聲變量,做特徵選擇;

3. 如果特徵的數量和觀測樣本特別多,那麼當資源和時間充足時(這個前提很重要),使用SVM不失為一種選擇。

通常情況下:

【GBDT>=SVM>=RF>=Adaboost>=Other…】,現在深度學習很熱門,很多領域都用到,它是以神經網絡為基礎的,目前筆者自己也在學習,只是理論知識不紮實,理解的不夠深入,這裡就不做介紹了,希望以後可以寫一片拋磚引玉的文章。

算法固然重要,但好的數據卻要優於好的算法,設計優良特徵是大有裨益的。假如你有一個超大數據集,那麼無論你使用哪種算法可能對分類性能都沒太大影響(此時就可以根據速度和易用性來進行抉擇)。

相關焦點

  • 8種常見機器學習算法比較
    簡介機器學習算法太多了,分類、回歸、聚類、推薦、圖像識別領域等等,要想找到一個合適算法真的不容易,所以在實際應用中,我們一般都是採用啟發式學習方式來實驗。通常最開始我們都會選擇大家普遍認同的算法,諸如SVM,GBDT,Adaboost,現在深度學習很火熱,神經網絡也是一個不錯的選擇。
  • 機器學習算法一覽
    尷尬的是,按理說,機器學習介紹與算法一覽應該放在最前面寫,詳細的應用建議應該在講完機器學習常用算法之後寫,突然莫名奇妙在中間插播這麼一篇,好像有點打亂主線。 老話說『亡羊補牢,為時未晚』,前面開頭忘講的東西,咱在這塊兒補上。我們先帶著大家過一遍傳統機器學習算法,基本思想和用途。
  • 算法應用|機器學習python應用,初識機器學習是怎樣滴感受?
    其中有些算法適合多種問題,有些只適合解決一種問題,下面列出一些常見的一些機器學習算法。對於通過Python來基本實現機器學習算法,有幾個誤區可能是比較廣泛存在的,應該儘量避免:1、必須非常熟悉Python的語法和擅長Python的編程。
  • 淺談機器學習分類算法
    目前隨著人工智慧的發展,機器學習的應用領域日益寬泛,各種機器學習適應不同的應用場景,而機器學習差別的關鍵點之一就在於所使用算法的不同,
  • 算法應用|機器學習python應用,簡單機器學習項目實踐
    這個項目是針對鳶尾花(Iris Flower)進行分類的一個項目,數據集是含鳶尾花的三個亞屬的分類信息,通過機器學習算法生成一個模型,自動分類新數據到這三個亞屬的某一個中。6.2 創建模型對任何問題來說,不能僅通過對數據進行審查,就判斷出哪個算法最有效。通過前面的圖表,發現有些數據特徵符合線性分布,所有可以期待算法會得到比較好的結果 。接下來評估六種不同的算法:線性回歸(LR)。
  • 【機器學習】監督式和非監督式機器學習算法
    本文中你將了解到監督式學習,非監督式學習和半監督式學習在閱讀本文之後你將知道如下知識:有關分類和回歸的監督式學習問題關於聚類和關聯非監督式學習問題用於監督式和非監督式問題的Example算法案例半監督式學習介於監督式和非監督式學習之間讓我們開始吧。
  • 機器學習最主流的算法庫sklearn
    sklearn是機器學習研究人員的入門必選庫,也是機器學習算法工程師繞不過去的算法庫。本文主要介紹sklearn的主要功能、優缺點等。最後,以一個簡單的例子來告訴大家如何使用sklearn完成機器學習算法的研究和實踐。」scikit-learn是什麼?
  • 機器學習常見算法分類匯總
    機器
  • 機器學習算法之LASSO算法
    算法名稱:LASSO的全稱Least Absolute Shrinkage
  • 如何選擇正確的機器學習算法
    機器學習通用方法1 - 將問題分類按輸入分類:如果是標記數據,則是監督學習問題。如果它是用於查找結構的未標記數據,那麼這是一個無監督機器學習學習問題。如果解決方案是通過與環境交互來優化目標函數,那麼這就是強化學習問題。
  • 圖解機器學習的常見算法
    ,大家總是被其中的各種各樣的算法和方法搞暈,覺得無從下手。確實,機器學習的各種套路確實不少,但是如果掌握了正確的路徑和方法,其實還是有跡可循的,這裡我推薦SAS的Li Hui的這篇博客,講述了如何選擇機器學習的各種方法。另外,Scikit-learn 也提供了一幅清晰的路線圖給大家選擇:其實機器學習的基本算法都很簡單,下面我們就利用二維數據和交互圖形來看看機器學習中的一些基本算法以及它們的原理。
  • 常見的機器學習算法,你知道幾個?
    誕生於1956年的人工智慧,由於受到智能算法、計算速度、存儲水平等因素的影響,在六十多年的發展過程中經歷了多次高潮和低谷。最近幾年,得益於數據量的上漲、運算力的提升,特別是機器學習新算法的出現,人工智慧迎來了大爆發的時代。提到機器學習這個詞時,有些人首先想到的可能是科幻電影裡的機器人。
  • 終極算法:機器學習裡的「牛頓三定律」
    前兩天討論了下數據和算法的重要性:智能時代,究竟是算法重要還是大數據重要?很難說哪個更重要,事實上把他們做比較甚至都是不合理的,不具有可比性。
  • 新手必看的十種機器學習算法
    雷鋒網 AI 科技評論按:在神經網絡的成功的帶動下,越來越多的研究人員和開發人員都開始重新審視機器學習,開始嘗試用某些機器學習方法自動解決可以輕鬆採集數據的問題。然而,在眾多的機器學習算法中,哪些是又上手快捷又功能強大、適合新手學習的呢?Towards Data Science 上一篇文章就介紹了十種新手必看的機器學習算法,雷鋒網 AI 科技評論全文編譯如下。
  • 我的機器學習算法之路
    掌握人工智慧技術,需要從基礎的機器學習算法開始學習,逐漸建立機器學習知識體系。本篇文章 :1.帶大家克服心理上對於機器學習的敬畏,繞開彎路(本人入過很多坑),進入機器學習領域。2.從基本概念和機器學習的應用領域入手,幫助大家建立機器學習的概念模型。3.用最基本的線性回歸和邏輯回歸算法,讓大家掌握機器學習神秘的「三板斧」方法論。
  • Machine Learning:十大機器學習算法
    無監督學習算法 (Unsupervised Algorithms):這類算法沒有特定的目標輸出,算法將數據集分為不同的組。支持向量機算法(Support Vector Machine,SVM)支持向量機/網絡算法(SVM)屬於分類型算法。SVM模型將實例表示為空間中的點,將使用一條直線分隔數據點。需要注意的是,支持向量機需要對輸入數據進行完全標記,僅直接適用於兩類任務,應用將多類任務需要減少到幾個二元問題。
  • 機器學習萌新必學的Top10算法
    大的原則不過呢,對於所有預測建模的監督學習算法來說,還是有一些通用的底層原則的。機器學習算法,指的是要學習一個目標函數,能夠儘可能地還原輸入和輸出之間的關係。然後根據新的輸入值X,來預測出輸出值Y。精準地預測結果是機器學習建模的任務。
  • 14種機器學習常見算法分類匯總!
    很多人在平時的工作中都或多或少會用到機器學習的算法。這裡總結一下常見的機器學習算法,以供您在工作和學習中參考。機器學習的算法很多。很多時候困惑人們都是,很多算法是一類算法,而有些算法又是從其他算法中延伸出來的。這裡,我們從兩個方面來給大家介紹,第一個方面是學習的方式,第二個方面是算法的類似性。根據數據類型的不同,對一個問題的建模有不同的方式。
  • 機器學習十大算法都是何方神聖?
    跟我們生活息息相關的最常見機器學習算法包括電影推薦算法、圖書推薦算法。這些算法都是基於你的電影觀看記錄或圖書購買記錄來給你做推薦的。James Le在KDnuggets上發布了一篇文章,介紹了他是如何入門機器學習的。此外,他在其中摸索出十大常用的機器學習算法,並逐一進行介紹。雷鋒網編譯如下,未經許可不得轉載。如果你想學機器學習,那怎麼入門呢?
  • 機器學習分類算法總結
    它採用自頂向下的遞歸方式,在決策樹的內部節點進行屬性的比較,並根據不同屬性值判斷從該節點向下的分支,在決策樹的葉節點得到結論。 主要的決策樹算法有ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法等。它們在選擇測試屬性採用的技術、生成的決策樹的結構、剪枝的方法以及時刻,能否處理大數據集等方面都有各自的不同之處。