NeurIPS2019機器學習頂會接受論文列表!

2021-02-08 GAN生成式對抗網絡


來源:專知

【導讀】人工智慧和機器學習領域的國際頂級會議NeurIPS 2019公布了接受論文,有效提交論文6743篇論文, 總共有1428接受論文, 21.1%接受率,包括36篇Oral,164篇Spotlights。最近,NeurIPS 2019接受論文列表公布出來,大家可以查找自己感興趣的提前看。

NeurIPS是人工智慧和機器學習領域的國際頂級會議,由NIPS基金會負責運營。該會議全稱為神經信息處理系統大會(Conference and Workshop on Neural Information Processing Systems,NIPS),自1987年開始,每年的12月份,來自世界各地的從事AI和ML相關的專家學者和從業人士匯聚一堂。受其名稱歧義帶來的壓力(部分原因是其首字母縮寫具有「曖昧的內涵」,帶有性別歧視的意義),2018年的會議名稱改為NeurIPS 。


NeurIPS 2019接受論文推薦

連結:

https://neurips.cc/Conferences/2019/AcceptedPapersInitial


Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
Risto Vuorio (University of Michigan) · Shao-Hua Sun (University of Southern California) · Hexiang Hu (University of Southern California) · Joseph J Lim (University of Southern California)

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
Jiasen Lu (Georgia Tech) · Dhruv Batra (Georgia Tech / Facebook AI Research (FAIR)) · Devi Parikh (Georgia Tech / Facebook AI Research (FAIR)) · Stefan Lee (Georgia Institute of Technology)

Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers
Liwei Wu (University of California, Davis) · Shuqing Li (University of California, Davis) · Cho-Jui Hsieh (UCLA) · James Sharpnack (UC Davis)

Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video
JiaWang Bian (The University of Adelaide) · Zhichao Li (Tusimple) · Naiyan Wang (Hong Kong University of Science and Technology) · Huangying Zhan (The University of Adelaide) · Chunhua Shen (University of Adelaide) · Ming-Ming Cheng (Nankai University) · Ian Reid (University of Adelaide)

Zero-shot Learning via Simultaneous Generating and Learning
Hyeonwoo Yu (Seoul National University) · Beomhee Lee (Seoul National University)

Ask not what AI can do for you, but what AI should do: Towards a framework of task delegability
Brian Lubars (University of Colorado Boulder) · Chenhao Tan (University of Colorado Boulder)

Stand-Alone Self-Attention in Vision Models
Niki Parmar (Google) · Prajit Ramachandran (Google Brain) · Ashish Vaswani (Google Brain) · Irwan Bello (Google) · Anselm Levskaya (Google) · Jon Shlens (Google Research)

High Fidelity Video Prediction with Large Neural Nets
Ruben Villegas (Adobe Research / U. Michigan) · Arkanath Pathak (Google) · Harini Kannan (Google Brain) · Honglak Lee (Google / U. Michigan) · Dumitru Erhan (Google Brain) · Quoc V Le (Google)

Unsupervised learning of object structure and dynamics from videos
Matthias Minderer (Google Research) · Chen Sun (Google Research) · Ruben Villegas (Adobe Research / U. Michigan) · Forrester Cole (Google Research) · Kevin P Murphy (Google) · Honglak Lee (Google Brain)

TensorPipe: Easy Scaling with Micro-Batch Pipeline Parallelism
Yanping Huang (Google Brain) · Youlong Cheng (Google) · Ankur Bapna (Google) · Orhan Firat (Google) · Dehao Chen (Google) · Mia Chen (Google Brain) · HyoukJoong Lee (Google) · Jiquan Ngiam (Google Brain) · Quoc V Le (Google) · Yonghui Wu (Google) · zhifeng Chen (Google Brain)

Meta-Learning with Implicit Gradients
Aravind Rajeswaran (University of Washington) · Chelsea Finn (Stanford University) · Sham Kakade (University of Washington) · Sergey Levine (UC Berkeley)

Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas (MIT) · Shibani Santurkar (MIT) · Dimitris Tsipras (MIT) · Logan Engstrom (MIT) · Brandon Tran (Massachusetts Institute of Technology) · Aleksander Madry (MIT)

Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks
Vineet Kosaraju (Stanford University) · Amir Sadeghian (Stanford University) · Roberto Martín-Martín (Stanford University) · Ian Reid (University of Adelaide) · Hamid Rezatofighi (University of Adelaide) · Silvio Savarese (Stanford University)

FreeAnchor: Learning to Match Anchors for Visual Object Detection
Xiaosong Zhang (University of Chinese Academy of Sciences) · Fang Wan (University of Chinese Academy of Sciences) · Chang Liu (University of Chinese Academy of Sciences) · Rongrong Ji (Xiamen University, China) · Qixiang Ye (University of Chinese Academy of Sciences, China)

Differentially Private Hypothesis Selection
Mark Bun (Princeton University) · Gautam Kamath (University of Waterloo) · Thomas Steinke (IBM, Almaden) · Steven Wu (Microsoft Research)

New Differentially Private Algorithms for Learning Mixtures of Well-Separated Gaussians
Gautam Kamath (University of Waterloo) · Or Sheffet (University of Alberta) · Vikrant Singhal (Northeastern University) · Jonathan Ullman (Northeastern University)

Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation
Mark Bun (Princeton University) · Thomas Steinke (IBM, Almaden)

Multi-Resolution Weak Supervision for Sequential Data
Paroma Varma (Stanford University) · Frederic Sala (Stanford) · Shiori Sagawa (Stanford University) · Jason Fries (Stanford University) · Daniel Fu (Stanford University) · Saelig Khattar (Stanford University) · Ashwini Ramamoorthy (Stanford University) · Ke Xiao (Stanford University) · Kayvon Fatahalian (Stanford) · James Priest (Stanford University) · Christopher Ré (Stanford)

DeepUSPS: Deep Robust Unsupervised Saliency Prediction via Self-supervision
Tam Nguyen (Freiburg Computer Vision Lab) · Maximilian Dax (Bosch GmbH) · Chaithanya Kumar Mummadi (Robert Bosch GmbH) · Nhung Ngo (Bosch Center for Artificial Intelligence) · Thi Hoai Phuong Nguyen (KIT) · Zhongyu Lou (Robert Bosch Gmbh) · Thomas Brox (University of Freiburg)

The Point Where Reality Meets Fantasy: Mixed Adversarial Generators for Image Splice Detection
Vladimir V. Kniaz (IEEE) · Vladimir Knyaz (State Research Institute of Aviation Systems) · Fabio Remondino ("Fondazione Bruno Kessler, Italy")

You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle
Dinghuai Zhang (Peking University) · Tianyuan Zhang (Peking University) · Yiping Lu (Peking University) · Zhanxing Zhu (Peking University) · Bin Dong (Peking University)

Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement
Chao Yang (Tsinghua University) · Xiaojian Ma (University of California, Los Angeles) · Wenbing Huang (Tsinghua University) · Fuchun Sun (Tsinghua) · 劉 華平 (清華大學) · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab) · Chuang Gan (MIT-IBM Watson AI Lab)

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance
Kimia Nadjahi ( Télécom ParisTech) · Alain Durmus (ENS) · Umut Simsekli (Institut Polytechnique de Paris) · Roland Badeau (Télécom ParisTech)

Generalized Sliced Wasserstein Distances
Soheil Kolouri (HRL Laboratories LLC) · Kimia Nadjahi ( Télécom ParisTech) · Umut Simsekli (Institut Polytechnique de Paris) · Roland Badeau (Télécom ParisTech) · Gustavo Rohde (University of Virginia)

First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise
Than Huy Nguyen (Telecom ParisTech) · Umut Simsekli (Institut Polytechnique de Paris) · Mert Gurbuzbalaban (Rutgers) · Gaël RICHARD (Télécom ParisTech)

Blind Super-Resolution Kernel Estimation using an Internal-GAN
Yosef Bell Kligler (Weizmann Istitute of Science) · Assaf Shocher (Weizmann Institute of Science) · Michal Irani (The Weizmann Institute of Science)

Noise-tolerant fair classification
Alex Lamy (Columbia University) · Ziyuan Zhong (Columbia University) · Aditya Menon (Google) · Nakul Verma (Columbia University)

Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection
Bingzhe Wu (Peeking University) · Shiwan Zhao (IBM Research - China) · Haoyang Xu (Peking University) · Chaochao Chen (Ant Financial) · Li Wang (Ant Financial) · Xiaolu Zhang (Ant Financial Services Group) · Guangyu Sun (Peking University) · Jun Zhou (Ant Financial)

Joint-task Self-supervised Learning for Temporal Correspondence
xueting li (uc merced) · Sifei Liu (NVIDIA) · Shalini De Mello (NVIDIA) · Xiaolong Wang (CMU) · Jan Kautz (NVIDIA) · Ming-Hsuan Yang (UC Merced / Google)

Provable Gradient Variance Guarantees for Black-Box Variational Inference
Justin Domke (University of Massachusetts, Amherst)

Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke (University of Massachusetts, Amherst) · Daniel Sheldon (University of Massachusetts Amherst)

Experience Replay for Continual Learning
David Rolnick (UPenn) · Arun Ahuja (DeepMind) · Jonathan Schwarz (DeepMind) · Timothy Lillicrap (Google DeepMind) · Gregory Wayne (Google DeepMind)

Deep ReLU Networks Have Surprisingly Few Activation Patterns
Boris Hanin (Texas A&M) · David Rolnick (UPenn)

Chasing Ghosts: Instruction Following as Bayesian State Tracking
Peter Anderson (Georgia Tech) · Ayush Shrivastava (Georgia Institute of Technology) · Devi Parikh (Georgia Tech / Facebook AI Research (FAIR)) · Dhruv Batra (Georgia Tech / Facebook AI Research (FAIR)) · Stefan Lee (Georgia Institute of Technology)

Block Coordinate Regularization by Denoising
Yu Sun (Washington University in St. Louis) · Jiaming Liu (Washington University in St. Louis) · Ulugbek Kamilov (Washington University in St. Louis)

Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova (Mila & Idiap & EPFL) · Gauthier Gidel (Mila) · François Fleuret (Idiap Research Institute) · Simon Lacoste-Julien (Mila, Université de Montréal)

Learning Erdos-Renyi Random Graphs via Edge Detecting Queries
Zihan Li (National University of Singapore) · Matthias Fresacher (University of Adelaide) · Jonathan Scarlett (National University of Singapore)

A Primal-Dual link between GANs and Autoencoders
Hisham Husain (The Australian National University) · Richard Nock (Data61, the Australian National University and the University of Sydney) · Robert Williamson (Australian National University & Data61)

muSSP: Efficient Min-cost Flow Algorithm for Multi-object Tracking
CONGCHAO WANG (Virginia Tech) · Yizhi Wang (Virginia Tech) · Yinxue Wang (Virginia Tech) · Chiung-Ting Wu (Virginia Tech) · Guoqiang Yu (Virginia Tech)

Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation
Qiming Zhang (the University of Sydney) · Jing Zhang (The University of Sydney) · Wei Liu (Tencent AI Lab) · Dacheng Tao (University of Sydney)

Invert to Learn to Invert
Patrick Putzky (University of Amsterdam) · Max Welling (University of Amsterdam / Qualcomm AI Research)

Equitable Stable Matchings in Quadratic Time
Nikolaos Tziavelis (Northeastern University) · Ioannis Giannakopoulos (National Technical University of Athens) · Katerina Doka (NTUA) · Nectarios Koziris (NTUA) · Panagiotis Karras (Aarhus University)

Zero-Shot Semantic Segmentation
Maxime Bucher (Valeo.ai) · Tuan-Hung VU (Valeo.ai) · Matthieu Cord (Sorbonne University) · Patrick Pérez (Valeo.ai)

Metric Learning for Adversarial Robustness
Chengzhi Mao (Columbia University) · Ziyuan Zhong (Columbia University) · Junfeng Yang (Columbia University) · Carl Vondrick (Columbia University) · Baishakhi Ray (Columbia University)

DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction
Qiangeng Xu (USC) · Weiyue Wang (USC) · Duygu Ceylan (Adobe Research) · Radomir Mech (Adobe Systems Incorporated) · Ulrich Neumann (USC)

Batched Multi-armed Bandits Problem
Zijun Gao (Stanford University) · Yanjun Han (Stanford University) · Zhimei Ren (Stanford University) · Zhengqing Zhou (Stanford University)

vGraph: A Generative Model for Joint Community Detection and Node Representation Learning
Fan-Yun Sun (National Taiwan University) · Meng Qu (MILA) · Jordan Hoffmann (Harvard University/Mila) · Chin-Wei Huang (MILA) · Jian Tang (HEC Montreal & MILA)

Differentially Private Bayesian Linear Regression
Garrett Bernstein (University of Massachusetts Amherst) · Daniel Sheldon (University of Massachusetts Amherst)

Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos
Yitian Yuan (Tsinghua University) · Lin Ma (Tencent AI Lab) · Jingwen Wang (Tencent AI Lab) · Wei Liu (Tencent AI Lab) · Wenwu Zhu (Tsinghua University)

AGEM: Solving Linear Inverse Problems via Deep Priors and Sampling
Bichuan Guo (Tsinghua University) · Yuxing Han (South China Agriculture University) · Jiangtao Wen (Tsinghua University)

CPM-Nets: Cross Partial Multi-View Networks
Changqing Zhang (Tianjin university) · han zongbo (Tianjin University) · yajie cui (tianjin university) · Huazhu Fu (Inception Institute of Artificial Intelligence) · Joey Tianyi Zhou (IHPC, A*STAR) · Qinghua Hu (Tianjin University)

Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis
Xihui Liu (The Chinese University of Hong Kong) · Guojun Yin (University of Science and Technology of China) · Jing Shao (Sensetime) · Xiaogang Wang (The Chinese University of Hong Kong) · hongsheng Li (cuhk)

Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling
Andrey Kolobov (Microsoft Research) · Yuval Peres (N/A) · Cheng Lu (Microsoft) · Eric J Horvitz (Microsoft Research)

SySCD: A System-Aware Parallel Coordinate Descent Algorithm
Celestine Mendler-Dünner (UC Berkeley) · Nikolas Ioannou (IBM Research) · Thomas Parnell (IBM Research)

Importance Weighted Hierarchical Variational Inference
Artem Sobolev (Samsung) · Dmitry Vetrov (Higher School of Economics, Samsung AI Center, Moscow)

RSN: Randomized Subspace Newton
Robert Gower (Telecom-Paristech) · Dmitry Koralev (KAUST) · Felix Lieder (Heinrich-Heine-Universität Düsseldorf) · Peter Richtarik (KAUST)

Trust Region-Guided Proximal Policy Optimization
Yuhui Wang (Nanjing University of Aeronautics and Astronautics, China) · Hao He (Nanjing University of Aeronautics and Astronautics) · Xiaoyang Tan (Nanjing University of Aeronautics and Astronautics, China) · Yaozhong Gan (Nanjing University of Aeronautics and Astronautics, China)

Adversarial Self-Defense for Cycle-Consistent GANs
Dina Bashkirova (Boston University) · Ben Usman (Boston University) · Kate Saenko (Boston University)

Towards closing the gap between the theory and practice of SVRG
Othmane Sebbouh (Télécom ParisTech) · Nidham Gazagnadou (Télécom ParisTech) · Samy Jelassi (Princeton University) · Francis Bach (INRIA - Ecole Normale Superieure) · Robert Gower (Telecom-Paristech)

Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control
Armin Lederer (Technical University of Munich) · Jonas Umlauft (Technical University of Munich) · Sandra Hirche (Technische Universitaet Muenchen)

ETNet: Error Transition Network for Arbitrary Style Transfer
Chunjin Song (Shenzhen University) · Zhijie Wu (Shenzhen University) · Yang Zhou (Shenzhen University) · Minglun Gong (Memorial Univ) · Hui Huang (Shenzhen University)

No Pressure! Addressing the Problem of Local Minima in Manifold Learning Algorithms
Max Vladymyrov (Google)

Deep Equilibrium Models
Shaojie Bai (Carnegie Mellon University) · J. Zico Kolter (Carnegie Mellon University / Bosch Center for AI) · Vladlen Koltun (Intel Labs)

Saccader: Accurate, Interpretable Image Classification with Hard Attention
Gamaleldin Elsayed (Google Brain) · Simon Kornblith (Google Brain) · Quoc V Le (Google)

Multiway clustering via tensor block models 
Miaoyan Wang (University of Wisconsin - Madison) · Yuchen Zeng (University of Wisconsin - Madison)

Regret Minimization for Reinforcement Learning on Multi-Objective Online Markov Decision Processes
Wang Chi Cheung (Department of Industrial Systems Engineering and Management, National University of Singapore)

NAT: Neural Architecture Transformer for Accurate and Compact Architectures
Yong Guo (South China University of Technology) · Yin Zheng (Tencent AI Lab) · Mingkui Tan (South China University of Technology) · Qi Chen (South China University of Technology) · Jian Chen ("South China University of Technology, China") · Peilin Zhao (Tencent AI Lab) · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)

Selecting Optimal Decisions via Distributionally Robust Nearest-Neighbor Regression
Ruidi Chen (Boston University) · Ioannis Paschalidis (Boston University)

Network Pruning via Transformable Architecture Search
Xuanyi Dong (University of Technology Sydney) · Yi Yang (UTS)

Differentiable Cloth Simulation for Inverse Problems
Junbang Liang (University of Maryland, College Park) · Ming Lin (UMD-CP & UNC-CH ) · Vladlen Koltun (Intel Labs)

Poisson-randomized Gamma Dynamical Systems
Aaron Schein (UMass Amherst) · Scott Linderman (Columbia University) · Mingyuan Zhou (University of Texas at Austin) · David Blei (Columbia University) · Hanna Wallach (MSR NYC)

Volumetric Correspondence Networks for Optical Flow
Gengshan Yang (Carnegie Mellon University) · Deva Ramanan (Carnegie Mellon University)

Learning Conditional Deformable Templates with Convolutional Networks
Adrian Dalca (MIT, HMS) · Marianne Rakic (ETH Zürich) · John Guttag (Massachusetts Institute of Technology) · Mert Sabuncu (Cornell)

Fast Low-rank Metric Learning for Large-scale and High-dimensional Data
Han Liu (Tsinghua University) · Zhizhong Han (University of Maryland, College Park) · Yu-Shen Liu (Tsinghua University) · Ming Gu (Tsinghua University)

Efficient Symmetric Norm Regression via Linear Sketching
Zhao Song (University of Washington) · Ruosong Wang (Carnegie Mellon University) · Lin Yang (Johns Hopkins University) · Hongyang Zhang (Carnegie Mellon University) · Peilin Zhong (Columbia University)

RUBi: Reducing Unimodal Biases in Visual Question Answering
Remi Cadene (LIP6) · Corentin Dancette (LIP6) · Hedi Ben younes (Université Pierre & Marie Curie / Heuritech) · Matthieu Cord (Sorbonne University) · Devi Parikh (Georgia Tech / Facebook AI Research (FAIR))

Reducing Scene Bias of Convolutional Neural Networks for Human Action Understanding
Jinwoo Choi (Virginia Tech) · Chen Gao (Virginia Tech) · Joseph C.E. Messou (Virginia Tech) · Jia-Bin Huang (Virginia Tech)

NeurVPS: Neural Vanishing Point Scanning via Conic Convolution
Yichao Zhou (UC Berkeley) · Haozhi Qi (UC Berkeley) · Jingwei Huang (Stanford University) · Yi Ma (UC Berkeley)

DATA: Differentiable ArchiTecture Approximation
Jianlong Chang (National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences) · xinbang zhang (Institute of Automation,Chinese Academy of Science) · Yiwen Guo (Intel Labs China) · GAOFENG MENG (Institute of Automation, Chinese Academy of Sciences) · SHIMING XIANG (Chinese Academy of Sciences, China) · Chunhong Pan (Institute of Automation, Chinese Academy of Sciences)

由於字數限制,未完待續


☞ OpenPV平臺發布在線的ParallelEye視覺任務挑戰賽

☞【學界】第1屆「智能車輛中的平行視覺」研討會成功舉行

☞【學界】生成式對抗網絡:從生成數據到創造智能

☞【學界】OpenPV:中科院研究人員建立開源的平行視覺研究平臺

☞【學界】基於平行視覺的特定場景下行人檢測

☞【學界】ParallelEye:面向交通視覺研究構建的大規模虛擬圖像集

☞【CFP】Virtual Images for Visual Artificial Intelligence

☞【最詳盡的GAN介紹】王飛躍等:生成式對抗網絡 GAN 的研究進展與展望

☞【智能自動化學科前沿講習班第1期】王飛躍教授:生成式對抗網絡GAN的研究進展與展望

☞【智能自動化學科前沿講習班第1期】王坤峰副研究員:GAN與平行視覺

☞【重磅】平行將成為一種常態:從SimGAN獲得CVPR 2017最佳論文獎說起

☞【平行講壇】平行圖像:圖像生成的一個新型理論框架

☞【學界】基於生成對抗網絡的低秩圖像生成方法

☞【學界】Ian Goodfellow等人提出對抗重編程,讓神經網絡執行其他任務

☞【學界】六種GAN評估指標的綜合評估實驗,邁向定量評估GAN的重要一步

☞【資源】T2T:利用StackGAN和ProGAN從文本生成人臉

☞【學界】 CVPR 2018最佳論文作者親筆解讀:研究視覺任務關聯性的Taskonomy

☞【業界】英特爾OpenVINO™工具包為創新智能視覺提供更多可能

☞【學界】ECCV 2018: 對抗深度學習: 魚 (模型準確性) 與熊掌 (模型魯棒性) 能否兼得 


相關焦點

  • NeurIPS 2019 Accepted Papers完整列表
    AI頂會NeurIPS 2019官方日前發布了論文接收的完整名單。
  • NeurIPS 2020高校論文排名:斯坦福全球第1,清華全球第5!周志華,李飛飛等大牛論文上榜!
    而在昨日,NeurIPS 2020論文接收列表終於在官網放出:(https://neurips.cc/Conferences/2020/AcceptedPapersInitial)據Criteo AI Lab機器學習研究科學家Sergey Ivanov統計,本次NeurIPS 2020論文接收量全球機構排名Top 10依次為:
  • NeurIPS 2020論文接收大排行!谷歌169篇第一、斯坦福第二、清華...
    而在前日,NeurIPS 2020 論文接收列表終於在官網放出:(https://neurips.cc/Conferences/2020/AcceptedPapersInitial)據 Criteo AI Lab 機器學習研究科學家 Sergey Ivanov 統計,
  • 17篇論文詳解圖的機器學習趨勢 | NeurIPS 2019
    必須承認,圖的機器學習(Machine Learning on Graphs)已經成為各大AI頂會的熱門話題,NeurIPS 當然也不會例外。 在NeurIPS 2019上,僅主會場就有 100多個與圖相關的論文;另外,至少有三個workshop的主題與圖有關:Graph Representation Learning (大約有100多篇論文);Knowledge Representation & Reasoning Meets Machine Learning (KR2ML)(也有50篇吧);我們希望在接下來的這篇文章裡,能夠儘可能完整地討論基於圖的機器學習的研究趨勢
  • 17篇論文,詳解圖的機器學習趨勢|NeurIPS 2019
    必須承認,圖的機器學習(Machine Learning on Graphs)已經成為各大AI頂會的熱門話題,NeurIPS 當然也不會例外。NeurIPS2018中有幾篇論文對雙曲神經網絡的構建做了深入的理論分析,今年在NeurIPS2019上我們終於看到了雙曲幾何和圖結構結合的應用。
  • 17篇論文,詳解圖的機器學習趨勢 | NeurIPS 2019
    必須承認,圖的機器學習(Machine Learning on Graphs)已經成為各大AI頂會的熱門話題,NeurIPS 當然也不會例外。在NeurIPS 2019上,僅主會場就有 100多個與圖相關的論文;另外,至少有三個workshop的主題與圖有關:我們希望在接下來的這篇文章裡,能夠儘可能完整地討論基於圖的機器學習的研究趨勢,當然顯然不會包括所有。
  • NeurIPS2020獎項出爐:GPT-3等三項研究獲最佳論文獎,華人一作論文...
    北京時間 12 月 8 日凌晨,正在線上舉行的全球人工智慧頂會 NeurIPS 2020 公布了最佳論文等獎項。在一千八百餘篇論文中,三篇論文獲會議最佳論文獎項,OpenAI 等機構的 GPT-3 研究名列其中,可謂實至名歸。
  • NeurIPS 2020獎項出爐:GPT-3等三項研究獲最佳論文獎
    北京時間 12 月 8 日凌晨,正在線上舉行的全球人工智慧頂會 NeurIPS 2020 公布了最佳論文等獎項。在一千八百餘篇論文中,三篇論文獲會議最佳論文獎項,OpenAI 等機構的 GPT-3 研究名列其中,可謂實至名歸。
  • NeurIPS 2020 獎項出爐:GPT-3等三項研究獲最佳論文獎
    北京時間 12 月 8 日凌晨,正在線上舉行的全球人工智慧頂會 NeurIPS 2020 公布了最佳論文等獎項。在一千八百餘篇論文中,三篇論文獲會議最佳論文獎項,OpenAI 等機構的 GPT-3 研究名列其中,可謂實至名歸。人工智慧頂會 NeurIPS 2020 於本月 6 日 - 12 日在線上舉行,預計此次會議將迎來 18,000 名參會者。
  • ICML2019機器學習頂會接受論文列表!
    【導讀】2019 第36屆機器學習國際會議2019年6月9日至15日 美國加州長灘會議中心本年度ICML共收到3400篇左右的投稿,經過嚴格篩選,共有
  • 機器學習領域頂會ICML 2018 接受論文列表
    【導讀】機器學習領域最具影響力的學術會議之一的ICML將於2018年7月10日-15日在瑞典斯德哥爾摩舉行。
  • NeurIPS』20大意了沒有閃,被一句話超短摘要偷襲1900篇論文!
    源賴氏佐田,有兩個AI人,一個24歲,一個29歲,一個發過4篇頂會,一個發過9篇頂會。塔燜問我NeurIPS 2020還兩個星期就要召開啦,可是收錄的1900篇論文,塔燜怎麼讀都讀不完了~我說這個問題嫩們算是問「對」人了,因為陳老師我作為渾元形意AI掌門人億篇頂會都沒發過,但是我之前已經「教」過大家了:AI科技評論給大家提供了兩個NeurIPS 2020論文閱讀的便利。
  • 雲知聲- CMU 合作論文入選全球 AI 頂會 NeurIPS 2020
    在官方公布的論文入選名單中,雲知聲與 CMU (卡內基梅隆大學)張坤教授團隊等合作的針對機器學習典型的無監督領域自適應問題論文《Domain Adaptation As a Problem of Inference on Graphical Models》,憑藉基於數據驅動的圖模型框架解決方案的創新研究成功入選,彰顯了雲知聲在人工智慧與機器學習原創技術領域的持續創新能力。
  • 獲全球頂會NeurIPS、COLT雙認可 百度研究院優質論文解讀AI技術趨勢
    (原標題:獲全球頂會NeurIPS、COLT雙認可 百度研究院優質論文解讀AI技術趨勢)
  • 機器學習頂會ICML馬上開始,有什麼亮點值得關注?
    夏乙 發自 凹非寺量子位 出品 | 公眾號 QbitAI這幾天,吃瓜群眾心系莫斯科,機器學習研究者們的目光,飄向了更靠北的斯德哥爾摩。機器學習頂會ICML 2018馬上就要開始了。當時,ICLR 2018接收論文列表剛剛公布,一作小哥哥Athalye說,ICLR錄用的對抗樣本防禦論文,他們的模型攻破了7/8。他所說的現象,就是這篇獲獎論文所得「混淆梯度(Obfuscated Gradients)」。
  • 如何高效閱讀機器學習論文?
    機器學習領域非常火熱,新的模型、技術不斷更新非常快,要求我們在平時的工作和學習過程中,會需要去閱讀一些論文,跟蹤某個領域的最新動態。大家都有的疑問就是:如何高效的閱讀機器學習論文?對於這個問題,網上也有很多的答案,文章後面會附上一些我看過覺得比較好的文章或者視頻。我為什麼要來說這個問題呢?
  • 【收藏】2019年不容錯過的20大人工智慧/機器學習/計算機視覺等頂會時間表
    本文介紹了2019年值得關注的20個頂會,包括人工智慧、機器學習、計算機視覺、自然語言處理、體系結構等領域。目錄人工智慧/機器學習計算機視覺/模式識別自然語言處理/計算語言學體系結構數據挖掘/信息檢索計算機圖形學1.
  • NeurIPS和EMNLP deadline延期,是「人性光輝」還是「美國例外主義」?
    在疫情蔓延和民眾遊行示威的雙重困擾下,很多研究者提議並希望 NeurIPS 官方能夠適當延長論文提交的 deadline,理由是「很多因素使得研究者無法集中精力完成論文」。Facebook AI 研究中心科學家 Soumith Chintala:「我今天和昨天都請假了,因為我無法集中注意力。
  • 頂會論文,怎麼就成了申博的必要條件?
    而值得一提的是,驅動 Andreas Madsen 嘗試發頂會論文的原因,則是他在申請博士入學資格過程中四處碰壁的經歷。一個擁有機器學習碩士學位、豐富的機器學習開發經驗,同時也發表過一些重要論文的研究者竟然只因沒有發過頂會論文,而被一眾教授拒之門外?
  • 深度學習先驅Bengio:AI頂會論文的Deadline是時候取消了
    選自yoshuabengio.org 作者:Yoshua Bengio 機器之心編譯 對於機器學習界的研究者來說,一年的進度條幾乎是靠數著頂會