佚名 發表於 2019-12-31 15:48:17
通信光纖根據其應用波長下傳輸模式數量的不同,分為單模光纖和多模光纖。由於多模光纖芯徑較大,可以配合低成本光源使用,因此在短距離傳輸場景下有著極為廣泛的應用,如數據中心、區域網等。隨著近年來數據中心建設的高速發展,作為數據中心和區域網應用主流的多模光纖也迎來了春天,引起了人們的廣泛關注。
按照標準ISO/IEC 11801規範,多模光纖分為OM1、OM2、OM3、OM4、OM5五個大類,其與IEC 60792-2-10的對應關係,如表1所示。其中OM1, OM2是指傳統的62.5/125mm和50/125mm多模光纖; OM3、OM4和OM5是指新型的50/125mm萬兆位多模光纖。
一、傳統多模光纖
多模光纖的研發始於上個世紀七八十年代,早期的多模光纖包括很多尺寸種類,列入國際電工委(IEC)標準中的尺寸類型包括四種,芯包層直徑分為50/125μm、62.5/125μm、85/125μm和100/140μm。由於芯包層尺寸大則製作成本高、抗彎性能差,而且傳輸模數量增多,帶寬降低,因而較大芯包層尺寸的類型逐漸被淘汰,逐漸形成了兩種主要的芯包層尺寸,分別是50/125μm和62.5/125μm。
在早期的區域網中,為了儘可能地降低區域網的系統成本,普遍採用價格低廉的LED作光源。由於LED輸出功率低,發散角比較大,而50/125mm多模光纖的芯徑和數值孔徑都比較小,不利於與LED的高效耦合,不如芯徑和數值孔徑大的62.5/125mm多模光纖能使較多的光功率耦合到光纖鏈路中去,因此,50/125mm多模光纖在20世紀90年代中期以前不如62.5/125mm多模光纖那樣得到廣泛的應用。
隨著區域網傳輸速率不斷升級,自20世紀末以來,區域網向lGb/s速率以上發展,以LED作光源的62.5/125μm多模光纖僅僅幾百兆的帶寬逐漸不能滿足要求。相比之下,50/125mm多模光纖數值孔徑和芯徑較小,傳導模式也較少,因而有效地降低了多模光纖的模式色散,使得帶寬得到了顯著的增加,由於芯徑較小,50/125mm多模光纖的製作成本也更低,因此重新得到了廣泛的應用。
IEEE802.3z千兆位乙太網標準中規定50/125mm多模和62.5/125mm多模光纖都可以作為千兆位乙太網的傳輸介質使用。但對新建網絡,一般首選50/125mm多模光纖。
二、雷射優化的多模光纖
隨著技術的發展,850nm VCSEL(垂直腔體表面發射雷射器)出現。VCSEL雷射器比長波長雷射器價格更低,同時能夠提高網絡速率,因此獲得了廣泛應用。由於兩種發光器件的不同,必須對光纖本身進行改造,以適應光源的變化。
為了VCSEL雷射器需要,國際標準化組織/國際電工委員會(ISO/IEC)和美國電信工業聯盟(TIA)聯合起草了新一代纖芯為50mm的多模光纖的標準。ISO/IEC在其所制定的新的多模光纖等級中將新一代多模光纖劃為OM3類別(IEC標準為A1a.2),即為雷射優化的多模光纖。
後續出現的OM4光纖,實際是OM3多模光纖的升級版。OM4標準與OM3光纖相比,只是在光纖帶寬指標做了提升。即OM4光纖標準在850nm波長的有效模式帶寬(EMB)和滿注入帶寬(OFL)相比OM3 光纖都做了提高。如下表2所示。
表2 OM3和OM4光纖對比
多模光纖內傳輸模式眾多,隨之還帶來光纖抗彎曲性能的問題,當光纖彎曲時,高階的模式極易洩露出去,造成信號的損失,即光纖的彎曲損耗。隨著室內應用場景不斷增多,多模光纖在狹窄環境下的布線,對其抗彎曲性能也提出了更高要求。
不同於單模光纖簡單的折射率剖面結構,多模光纖的折射率剖面十分複雜,需要極為精細的折射率剖面設計與製作工藝。在目前國際主流的四大預製棒製備工藝中,製備多模光纖最為精密的是等離子體化學氣象沉積(PCVD)工藝,以長飛公司為代表。該工藝不同於其他工藝,其沉積層數多達幾千層,且沉積時每層僅約1微米的厚度,能夠實現超精細的折射率曲線控制,從而實現高帶寬。
通過對多模光纖折射率剖面的優化,現在的彎曲不敏感多模光纖,其抗彎性能有了顯著提升,如下圖1所示。
圖1抗彎多模光纖與常規多模光纖宏彎性能比較
三、新型多模光纖(OM5)
OM3光纖和OM4光纖,都是主要應用於850nm波段的多模光纖。隨著傳輸速率的不斷提升,僅僅單通道的波段設計,會帶來越來越密集的布線成本,隨之的管理維護成本也相應升高。因此,技術人員嘗試將波分復用概念引入多模傳輸系統中,如果能夠在一根光纖上傳輸多個波長,則相應的並行光纖根數和鋪設、維護成本都能大幅下降。在此背景下,OM5光纖應運而生。
OM5多模光纖,是在OM4光纖基礎上,擴寬了高帶寬通道,其能夠支持850nm~950nm波段的傳輸應用。目前主流的應用,是SWDM4和SR4.2設計。SWDM4是4個短波的波分復用,分別是850nm、880nm、910nm和940nm。這樣在一根光纖可以支撐此前4根並行光纖的業務。SR4.2是兩波分復用,主要用於單纖雙向技術。OM5能夠與性能好成本低的VCSEL雷射器配合,以更好的滿足數據中心等短距離通信。下表3是OM4和OM5光纖的主要帶寬指標對比。
表3 OM4和OM5光纖帶寬指標對比
目前,OM5光纖作為一種最新型的高端多模光纖,已有了許多應用案例。其中最大的一個商業案例,是長飛公司和中國鐵路總公司主數據中心的OM5商用案例。該數據中心瞄準了OM5光纖在SR4.2上的波分系統應用優勢,使用最低的成本,實現了最大容量的通信,也為未來進一步升級速率做了準備,未來提升速率至100Gb/s乃至400Gb/s,或者擴寬波段應用時,可以不再更換光纖,能夠顯著降低未來升級成本。
總結:隨著應用的需求不斷提高,多模光纖在朝著低彎曲損耗,高帶寬,多波長復用的方向發展,其中,最具有應用潛力的,當屬OM5光纖,其具有目前多模光纖最優的性能,為未來100Gb/s和400Gb/s的多波長系統提供了有力的光纖解決方案。此外,為適應高速率,高帶寬,低成本的數據中心通信的要求,新型的多模光纖,如單多模通用光纖,也正在研發中。未來,長飛公司將和業內同行一道推出更多的新型多模光纖解決方案,給數據中心和光纖互聯帶來新的突破和更低的成本。
責任編輯:gt
打開APP閱讀更多精彩內容聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴