35 萬行代碼,曠視重磅開源天元深度學習框架 ,四大特性實現簡單開發

2021-01-08 暢享網

2020年3月25日,人工智慧企業曠視科技舉辦線上發布會,曠視聯合創始人兼CTO唐文斌宣布正式開源其AI生產力平臺Brain++的核心組件——天元(MegEngine)。本次發布為Alpha版本,基於ApacheLicense2.0,向外界共開源約35萬行代碼,包括C++、CUDA和Python代碼,在GitHub上進行發布。  

發布會上,曠視研究院高級技術總監田忠博詳細介紹了這款剛剛正式對外開源的深度學習框架。  

全球AI開發框架又添一員,曠視開源「天元」  

曠視天元開源之時,正值深度學習框架百花齊放的時代。  

自2007年Theano誕生以來,經過十餘年發展,深度學習技術與應用突飛猛進,深度學習框架也處在不斷迭代與進化的過程;另一方面,開源的概念在全球範圍內越來越深入人心,這使得人工智慧開發依賴的環境安裝、部署、測試,以及不斷迭代改進準確性和性能調優的工作變得更加簡單,在人工智慧領域,開源深度學習框架已經成為開發者離不開的平臺和工具。  

學界和業界的共同努力下,誕生了早期從學術界走出的Caffe、Torch和Theano,現如今引領著產業界的TensorFlow,Amazon押注的MXNet,Facebook傾力打造的PyTorch,Microsoft內部開源的CNTK,以及相對小眾的深度學習引擎DSSTNE等深度學習框架。  

簡單梳理一下這些主流深度學習框架發展的歷程,我們會發現它們各有各的特性:  


TensorFlow由Google於2015年11月正式開源,很快就成為深度學習領域佔據絕對統治地位的深度學習框架,很多企業的產品都基於這一框架開發,如小米、京東、Airbnb等。TensorFlow全面的開發語言和模型訓練伺服器、行動裝置支持,使得其成為產業界採用最多的深度學習框架。  

MXNet項目誕生於2015年9月,當時在卡耐基梅隆大學CMU讀博的李沐創造了這個輕量級、可移植、靈活的分布式的開源深度學習框架,後成為Amazon官方主推的深度學習框架,支持CNN、RNN、LTSM,為圖像、手寫文字和語音的識別和預測以及自然語言處理提供了出色的工具。  

Keras的創造者是谷歌AI研究員FrancoisChollet,自2015年11月開源以來,已發展成為第二大流行深度學習框架。這個由Python編寫的開源人工神經網絡庫可以作為Tensorflow、CNTK和Theano的高階應用程式接口,進行深度學習模型的設計、調試、評估、應用和可視化,目標是只需幾行代碼就能讓你構建一個神經網絡。  

2016年,微軟開發的認知工具包CNTK問世,支持RNN和CNN類型的神經模型,成為處理圖像,手寫和語音識別問題的最佳候選者。雖然CNTK的分布式計算性能較高,但缺乏對ARM架構的支持限制了其在行動裝置上的功能。  

2017年,Facebook開源了用於神經網絡訓練的Python包PyTorch,它改編自基於Lua的深度學習庫Torch,類似於Numpy,非常Python化,很容易就能和Python生態系統的其他部分集成。由於對動態圖的支持,PyTorch的靈活性相比TensorFlow大大提升,特別是用於快速驗證和算法復現,因此備受學術界的青睞。  

有了這些功能強大的開發框架,AI開發者基本上也都會用之進行科研或業務落地。但是在人工智慧領域,大家使用比較多的還是Google、Facebook、微軟、亞馬遜的開源框架,國內雖然有很多網際網路巨頭都在開始這方面的工作,但目前還沒有形成風潮。  

2016年,網際網路巨頭百度開源了飛槳(PaddlePaddle),可能是國內目前最有影響力的AI框架;2019年,通訊行業巨頭華為宣布即將在2020年一季度開源MindSpore,但目前仍無進一步消息;3月25日,曠視研發的深度學習框架天元(MegEngine)正式開源。  


與主流深度學習框架相比,曠視的MegEngine有哪些特點呢?  

開源35萬行代碼,天元技術架構理念新穎  

唐文斌介紹,本次曠視天元共開源約35萬行代碼,包括C++、CUDA和Python的代碼。

曠視聯合創始人兼CTO唐文斌  

天元是一套伴隨曠視自身AI產業實戰經驗的框架,是曠視Brain++的核心組件之一。為了這次開源,曠視為天元做了一次全面的升級。  

從2014年開始研發,2015年全員使用,到今年3月開源,曠視目前所有的算法都是基於天元MegEngine這個框架訓練和推理的。它不僅能夠在AI競賽擂臺上為曠視打怪升級加Buff,更撐起了曠視工程化、產品化的半邊天。  

發布會上,天元項目的負責人,也是曠視研究院高級技術總監田忠博指出,天元是一套訓練推理一體化、動靜態合一的工業級深度學習框架。  


從上到下,天元可以分為五個層次,最上面是計算接口層,向外連接了Python和C++接口,開發者可以通過Python和C++兩種語言對整個框架進行使用和編程,以及系統的設計和研發、訓練和推理。  

接著是圖表示層,包含了動態圖和靜態圖的表示功能。  

再往下是一個完整的一體化核心計算引擎,具有自動求導機制,圖優化和圖編譯功能,有了這個層次就可以支撐起動態、靜態和接口完整的功能。  

在這個層次之下的運行時管理層由兩個主要部分組成,一部分是計算調度,可以將計算設備抽象為執行流,由調度器對這些執行流進行合理的調度;另一部分是一整套內存管理機制,包括靜態內存和動態內存管理。此外,這個模塊裡還內置了許多關於內存的高級優化,其中值得一提的是,在其中實現了靜態的亞線性內存的優化器,使得內存管理效率得到大幅提升。  

最底層是支撐整個系統的核心計算內核層,其中包含一個高性能算子庫,它支持常見的計算設備,包括X86、CUDA、ARM和專業計算晶片等。同時,這個層還包含一個高性能異構通信庫,能夠使得整個計算框架可以在分布式多結點上進行大規模使用,來支撐更大規模的訓練。  

四大特性剖析天元如何實現簡單開發


曠視研究院高級技術總監田忠博  

在過去幾年,曠視在研發過程中遇到了很多行業共通的痛點,而天元的核心特色就是緊緊圍繞著這些痛點的。  

具有來說,天元四大核心特性:訓練推理一體化、動靜合一、兼容並包和靈活高效。  

1.訓練推理一體化

比如其中的一個痛點,是深度學習從研究到生產的流程非常複雜,各個階段模型精度往往很難對齊。  

田忠博指出,在傳統深度學習研發流程中,訓練框架和推理框架往往會分別設計和實現,訓練框架和推理框架是兩個階段,當進行算法設計時,這個算法要首先經過訓練框架的支持,變成一個可訓練的模型,還要再把它轉換到一個推理框架上可以接受新的表示,再由推理框架在不同的計算設備上進行計算。  

在這裡會有一個訓練和推理的轉換過程,這一過程中會產生很多問題,比如因為訓練框架和推理框架是分別設計的,所以其中有些算力可能不被支持,導致無法自動完成轉換,需要手工進行優化,轉換過程中也可能引入了大量冗餘的算子,致使最後的模型性能和精度並不理想。當最後把推理框架投放在晶片上進行計算時問題暴露,但因為整個流程複雜,我們無法精準地找到問題所在。  

因此,天元框架的設計理念,就是希望訓練和推理一體,即讓它能夠同時進行訓練,也能夠進行推理。  

針對這個痛點,天元的訓練推理一體化可以很好地解決。  

(1)它無需進行模型的轉換,可以直接使用訓練後得到的模型進行推理;  

(2)可以通過這一機制,保證訓練的速度和精度與推理保持一致;  

(3)模型訓練結束後,需要在不同的設備上進行推理、使用,該框架也能夠保證跨設備的模型精度實現對齊(最小化精度差別);  

(4)通過簡化流程,天元框架能夠內置一個自動模型優化過程,減少手工模型遇錯處理,可以直接自動使用內置流程,簡化流程,形成高效的研發體系。  

這樣一來,AI真正落地要考慮的多端部署和在線服務的問題就得以解決,大大減少了訓練成本的問題。  

2.動靜合一  

痛點二,靜態圖好部署,動態圖易調試,但二者難以兼得。田忠博介紹道,深度學習框架大致分為兩類,一類是以TensorFlow1.0為代表的靜態深度學習框架,它非常容易部署,能夠很快地產出產品,是現在工業界非常喜歡的部署方式,它的性能高,佔用資源少,但是難以調試。在學界,大家更喜歡以PyTorch為代表的動態計算框架,因為它在研究階段調試更方便,使用更靈活,但是動態圖也有缺陷,比如內存佔用嚴重,很難做優化等。  

面對這個魚與熊掌不可兼得的問題,曠視嘗試把兩種框架的優點集成在一起,在設計天元時希望能夠達到動靜合一的效果。

 

上圖展示的是天元框架代碼中從動態到靜態切換的情況。可以看到,通過使用一個@trace的Python裝飾器來裝飾其中一段函數,實現了這段函數具備既可在動態下正確運行,也可以轉換到靜態形態運行的狀態。只需把「Enabled」開關設為True或者False,用戶就可以自由選擇動態或靜態計算。  

這樣,開發者就可以在動態的過程中,非常方便地進行原型的研發和調試,同時當希望在生產環節使用,或希望藉助更好的靜態優化器、靜態編譯機制進行提速時,可藉助靜態圖進行提速。  

田忠博表示,在測試中,靜態提速往往可以達到5%到20%的加速效果,節省時間,提高效率。  

3.兼容並包

第三個痛點,是市面上有很多框架,但每種框架使用的接口都不一樣,這導致大家在進行學術交流時,首先要了解它是用什麼框架實現的,在使用中還需要在常用的環境和框架中再重新進行模型實現,這對於一般的開發者來講是一件高成本的事。  

因此,為了簡化這個問題,天元在設計時還希望它是一個兼容並包的體系。  


上圖為使用天元框架進行深度學習的代碼,它的風格與Numpy和PyTorch的寫法非常相似,Pythonic風格的簡化API讓Python使用者可以自然地接受,所以在函數的命名風格和參數的設計細節中尊重原有Python社區的傳統。  

值得一提的是,天元還提供一個實驗性的功能,讓開發者可以便利地將以往寫過的模塊,如將PyTorchModule直接導入到框架中,和其他天元組件一起使用,以更好地進行模型復現。  

另外,田忠博提到,曠視在計算機視覺領域有一些獨特的積累,因此也把其在這方面的成果融入到天元系統中,集成了很多為計算機視覺特別優化的算子,讓計算機視覺研發更加簡便。  

4.靈活高效  

痛點四,對於一家進AI生產公司來說,可能會面臨很多設備和場景,需要在每一種設備上實現極致的性能。  

在框架設計時,天元秉持要靈活高效的原則,在許多的設備、算法上,都能得到領先的性能。接下來,田忠博放出了訓練性能對比圖,與若干擅長推理的框架進行橫向對比。  


結果顯示,在CPU推理場景下,天元在訓練性能上有顯著的提升和優勢,即可以同時在訓練和推理過程中保持高性能。另外,如果要把算法更好地部署在各種設備中,或者在訓練時能夠利用現有的設備訓練更大的模型,支持更多的算法種類,顯存或設備的片上內存使用是一個非常關鍵的因素。所以,節省內存也是天元所關注的。  

天元內置了一個高效的內存優化策略,它能夠顯著減少訓練時的顯存佔用,實現在同樣的設備上可以訓練更大的模型,支持更多算法。  

此外,天元還有很多內存和速度的優化機制,比如亞線性內存優化。可以發現,在使用天元動態圖能力時,可以支持32Batch左右的計算;如果轉換到靜態圖下,就可以支持64Batch的計算。那麼,如果希望在這種情況下,訓練更大的Batch和模型,則完全可以在這裡採用亞線性自動內存優化技術,在幾乎不降低計算速度前提下,達到256Batch的訓練能力,而且模型越大、越深,它的效果越好。  

田忠博表示,在內部評測中,天元可以實現某些大模型訓練時內存節省20倍以上,而速度幾乎不變。  

這些特性,使得天元能夠實現產品從實驗室原型到工業上能夠部署的小時級轉化能力,以及大規模的、彈性的訓練,並支撐頂級研究團隊進行最前沿的學術開發。  

這樣,天元可以做到「簡單開發」,讓開發者真正體驗到「訓得好」、「訓得動」、「訓得快」。  

揭秘天元「前世今生」,研發路線圖首次曝光  

從Theano為源頭,到不斷迭代到今天發布的MegEngineAlpha版本,天元的誕生來之不易,背後是曠視研究院團隊從0到1的打磨過程。  

曠視成立初衷是希望把計算機視覺應用於傳統產業,用技術改變世界。當2013年中深度學習剛剛興起之時,清華宿舍中一名實習生埋首兩周,研發出一套人臉識別檢測算法,算法性能技驚四座,於是曠視正式走上用神經網絡解決一切問題的道路。  

起初,曠視用Theano框架寫模型代碼,訓練神經網絡,但隨著網絡越訓越大,越來越複雜,低效耗時的框架令人崩潰,公司中的一些大牛開始琢磨其他的辦法。  

2013年底,曠視當時的研發負責人曹志敏提出打造一套能夠打通數據、訓練和業務的自動化算法研發系統Cycle++,不需要投入過多人力和時間就可以實現算法從研發到應用的自循環體系(曠視Brain++的早期設想)。於是,2014年初,曠視自研的初版深度學習框架誕生了。  

經過磨合,曠視在2015年年中完成了自研框架與公司內部所有業務的接軌,公司業務線上的模型全部換成了自研框架訓練出來的版本。  

2015年11月9日,Google正式發布並開源TensorFlow,曠視發現原來他們是殊途同歸,都是基於計算圖的方式來做框架,但這也給曠視的自研框架造成很大衝擊,公司內部在是否要繼續堅持自研框架上發生分歧。經過激烈的討論和詳細的評測後,曠視發現當時的TensorFlow的性能並不理想,竟比自研框架要慢若干倍。最終曠視選擇了堅持自研的道路。  

此後,經過不斷迭代,同時在工業實踐的鍛鍊中,除了最底層的框架,曠視也在同時進行數據和算力基礎設施的變革。2013年,曠視研究院成立了自己的數據團隊,隨著業務數據的暴增,數據管理不斷出現問題,曠視又開始建立自己的數據管理系統MegData。  

2015年底,天元MegEngine已經進入了穩步發展期,但公司「小作坊」模式開始扛不住業務需求,計算資源成為瓶頸問題,於是曠視建設了「正經的機房」,研發出深度學習雲計算平臺MegCompute,並僅用一個季度的時間完成了業務從單機到集群的徹底遷移。  

曠視從研發到業務全面向自有深度學習框架和自有計算集群的遷移,標誌著曠視數據、算法和算力三個核心組件正式完成「大一統」,自此曠視AI生產力平臺Brain++雛形初現。  


2016年,曠視開始組建大規模的團隊持續優化Brain++的整個套件開發流程,2019年開始籌備將Brain++最核心的深度學習框架開源,並為MegEngine起了一個中文名字——天元。這期間框架研發團隊可以說是經歷了一場浴火重生,把原來封裝好的代碼分解再重組,讓開發者上手更快。  

經過一年的籌備,天元今天終於如期開源,賦能開發者。未來,天元還有更多計劃,發布會現場曠視就首次曝光了天元的開發路線圖。  


田忠博表示,本次曠視開源的天元是Alpha版本,未來的開發計劃是在今年6月份發布Beta版本,屆時天元將提供ARM系列CPU支持,更多的加速設備支持,以及量化和低比特計算支持;到9月份發布正式1.0版本時,天元支持的主流計算設備將更全面,動態能力升級,並優化訓練推理全流程使用體驗。  

他說,在Beta版本和正式版本之間,希望更多人能夠參與並貢獻code,「也許下一代天元並不是由曠視的研發團隊做出來的,而是與你一起共創出來的Beta和正式版本,所以我們也希望跟大家一起來共建更好的深度學習框架。」  

天元好上手嗎?怎麼用?  

了解萬天元的架構、技術細節和曲折的研發背景及研發全景圖,下面該進入「靈魂提問」環節了:曠視這個深度學習開源框架到底好不好用?為什麼我要從已經熟悉的NumPy、TensorFlow、PyTorch、Keras或其他框架轉而學習天元?這個學習過程難嗎?  

對此,田忠博打消了大家的疑慮,他表示,在整個框架接口設計和使用習慣上,天元尊重以往大家在傳統的PyTorch機器學習和數學計算使用方面的習慣,在整體設計和框架完善過程中儘量減少阻力,讓大家更容易上手。  

值得注意的是,此次發布的內容裡已經包含了一些工具,如開箱即用的在線深度學習工具MegStudio,它能夠讓開發者便捷、快速地體驗天元框架,進行深度學習訓練。  

而壓縮和部署工具等周圍支持模塊的量化工具還在繼續整理中,預計在年中會和大家見面,系統的可視化工具和可視化系統的集成則會更晚一些。  

在開源文檔維護方面,田忠博表示基礎能力手冊和代碼是同步進行研發的,曠視會有內部流程確保文檔維護並保證文檔質量,希望有更多志願者加入,共同維護修正。  

同時,天元還提供一個模型中心ModelHub,匯聚頂尖算法的預訓練模型,並把曠視研究院的最新技術和研發成果發布到該平臺。曠視表示,更多SOTA的模型正在增加中。  

從無到有,從「授人以魚」到「授人以漁」,曠視滿懷誠意,正在通過開放Brain++,嘗試為AI打造一套VisualStudio,將AI能力帶給更多開發者,在算法研究的「煉丹」過程中,提供一套設備完善的「煉丹房」,至於煉丹的原材料和柴火,那就需要用戶按需自取了。  

在發布會上,曠視公布了天元在GitHub的代碼託管地址,想了解體驗如何不如直接試試吧!GitHub網址

想儘快上手一試?  

可進入天元官方網址體驗  

責編:暢享精靈

微信掃一掃實時了解行業動態
微信掃一掃分享本文給好友

相關焦點

  • 曠視天元深度學習框架全球首發!3個實習生寫下一行代碼,27項全球AI...
    總之,將MegEngine命名為」天元「是希望這個系統真正成為大家共同的基石,成為AI系統中重要的組成部分,能夠促進各個領域能夠更好的應用和落地AI。 本著「深度學習、簡單開發」的理念,天元有四大優勢:  1. 訓練推理一體化 曠視天元既可支持研究員進行算法訓練,同時訓練得到的模型和產物是可以直接進行用於產品的推理、封裝。
  • 深度學習框架比較,我該選擇哪一個?
    使用深度學習框架完成模型構建有如下兩個優勢: 節省編寫大量底層代碼的精力:屏蔽底層實現,用戶只需關注模型的邏輯結構。同時,深度學習工具簡化了計算,降低了深度學習入門門檻。
  • 2020,國產AI開源框架「亮劍」TensorFlow、PyTorch
    時間撥到四天前,AI獨角獸曠視科技宣布開源天元(MegEngine),強調這是訓練推理一體化、動靜態合一的工業級深度學習框架。3月20日,清華大學計算機系圖形實驗室開源AI框架計圖(Jittor),這是由中國學界開源的首個AI框架,直接對標PyTorch。
  • 不到1000行代碼,GitHub 1400星,天才黑客開源深度學習框架tinygrad
    來源:機器之心 本文約2000字,建議閱讀5分鐘 最近,天才黑客 George Hotz 開源了一個小型深度學習框架 tinygrad,兼具 PyTorch
  • 清華自研深度學習框架「計圖」開源!多項任務性能超過PyTorch
    乾明 發自 凹非寺量子位 報導 | 公眾號 QbitAIAI框架,又來重磅中國玩家。剛剛,清華自研的深度學習框架,正式對外開源。「貴系」計算機系的圖形實驗室出品,取名Jittor,中文名計圖。值得一提的是,這也是首個來自中國高校科研機構的開源深度學習框架,之前,業內來自「高校」的還有加拿大蒙特婁大學的Theano,UC伯克利的Caffe。與主流的深度學習框架TensorFlow、Pytorch不同,Jittor是一個完全基於動態編譯(Just-in-time)、使用元算子和統一計算圖的深度學習框架。
  • OneFlow開源日:再看《深度學習框架的靈魂》
    NeuralTalk評:OneFlow框架開源日,各媒體都在轉發相關PR稿件。
  • 清華自研深度學習框架「計圖」開源!多項任務性能超過PyTorch
    原創 關注前沿科技 量子位乾明 發自 凹非寺量子位 報導 | 公眾號 QbitAIAI框架,又來重磅中國玩家。剛剛,清華自研的深度學習框架,正式對外開源。值得一提的是,這也是首個來自中國高校科研機構的開源深度學習框架,之前,業內來自「高校」的還有加拿大蒙特婁大學的Theano,UC伯克利的Caffe。與主流的深度學習框架TensorFlow、Pytorch不同,Jittor是一個完全基於動態編譯(Just-in-time)、使用元算子和統一計算圖的深度學習框架。
  • CPU推理性能提高數十倍,曠視天元計算圖、MatMul優化深度解讀
    本文針對曠視天元深度學習框架在推理優化過程中所涉及的計算圖優化與 MatMul 優化進行深度解讀。在深度學習大規模落地邊緣端場景的今天,如何最大程度降本增效,是企業與開發者共同關注的話題。其中,模型的訓練與推理是兩個關鍵環節。
  • 挑戰TensorFlow、PyTorch,誰才是中國AI開源框架之星?
    眾所周知,深度學習開源框架的應用正在推動人工智慧技術從實驗室走向產業界。2020年,來自中國的AI開源框架更是接連登臺,由清華、曠視、華為、一流科技四大學界和業界機構陸續宣布開源AI框架MindSpore、MegEngine、Jittor、OneFlow,這也許會成為國產深度學習框架開源歷史上重要的高光時刻。
  • 華為深度學習框架MindSpore正式開源:自動微分不止計算圖
    今年的華為開發者大會 HDC 2020 上,除了昇騰、鯤鵬等自研晶片硬體平臺之外,最令人期待的就是深度學習框架 MindSpore 的開源了。今天上午,華為 MindSpore 首席科學家陳雷在活動中宣布這款產品正式開源,我們終於可以在開放平臺上一睹它的真面目。
  • 破解AI全流程開發難題,曠視推出Brain++商業版,將算法落地時間縮短...
    曠視Brain++商業版提供的,即是這樣的AI生產力工具。Brain++是曠視在產業應用工作中自主研發的全流程AI生產能力合集,是曠視各種AI業務的底層基礎設施,由深度學習框架MegEngine(天元)、算力管理平臺MegCompute、數據管理平臺MegData共同構成。
  • 曠視Brain++構建人工智慧基礎層 讓新基建有更紮實的「地基」
    據了解,Brain++是由曠視自主研發的新一代AI生產力平臺,具備大規模算法研發能力,具體包括深度學習框架天元(MegEngine)、深度學習雲計算平臺(MegCompute)以及數據管理平臺(MegData),讓算法、數據和算力在一個平臺中得到了動態平衡的最優解,能為用戶提供更完善的集成開發環境,滿足AI開發者從AI生產(輸出算法模型)到應用(實現算法工程化封裝
  • 深度學習——你需要了解的八大開源框架
    深度學習八大開源框架導讀:深度學習(Deep Learning)是機器學習中一種基於對數據進行表徵學習的方法,深度學習的好處是用非監督式或半監督式的特徵學習、分層特徵提取高效算法來替代手工獲取特徵作為當下最熱門的話題,Google、Facebook、Microsoft等巨頭都圍繞深度學習重點投資了一系列新興項目,他們也一直在支持一些開源深度學習框架。
  • 清華本科生開發強化學習平臺「天授」:千行代碼實現,剛剛開源
    賈浩楠 發自 凹非寺量子位 報導 | 公眾號 QbitAI江山代有才人出,開源一波更比一波強。就在最近,一個簡潔、輕巧、快速的深度強化學習平臺,完全基於Pytorch,在Github上開源。主要有四大優點:1、速度快,整個平臺只用1500行左右代碼實現,在已有的toy scenarios上面完勝所有其他平臺,比如3秒訓練一個倒立擺(CartPole)。
  • 天才黑客George Hotz開源了一個小型深度學習框架tinygrad
    George Hotz 開源了一個小型深度學習框架 tinygrad,兼具 PyTorch 和 micrograd 的功能。tinygrad 的代碼數量不到 1000 行,目前該項目獲得了 GitHub 1400 星。 在深度學習時代,谷歌、Facebook、百度等科技巨頭開源了多款框架來幫助開發者更輕鬆地學習、構建和訓練不同類型的神經網絡。而這些大公司也花費了很大的精力來維護 TensorFlow、PyTorch 這樣龐大的深度學習框架。
  • 百度開源移動端深度學習框架mobile-deep-learning(MDL)
    2017 年 9 月 25 日,百度在 GitHub 開源了移動端深度學習框架 mobile-deep-learning(MDL)的全部代碼以及腳本,希望這個項目在社區的帶動下能夠更好地發展。寫在前面深度學習技術已經在網際網路的諸多方向產生影響,每天科技新聞中關於深度學習和神經網絡的討論越來越多。
  • Caffe2代碼全部併入PyTorch:深度學習框架格局劇震
    昨日,Caffe2 的 Github 頁面突然出現了一個「巨大的改動」:Caffe2 開原始碼正式併入 PyTorch,至此,Facebook 主力支持的兩大深度學習框架已合二為一。這兩大框架,在整個深度學習框架格局中都極受關注。
  • 新智元專訪:清華大學深度強化學習框架「天授」開源|900星
    日前,清華大學人工智慧研究院基礎理論研究中心發布了深度強化學習框架「天授」,代碼已在GitHub開源(https://github.com/thu-ml/tianshou)。這也是繼「珠算」可微分概率編程庫之後,該中心推出的又一個面向複雜決策任務的編程庫。
  • 重磅發布開源框架、生物計算平臺螺旋槳,百度飛槳交了年終成績單
    同時,在以深度學習為代表的人工智慧發展浪潮中,產業界已經成為驅動開源開放的重要力量。而成熟的開源開放技術生態與開放平臺,也正在推動社會各界加快融合發展。」關於飛槳,王海峰分享了幾個重要的數字:從今年 5 月份的「WAVE SUMMIT 2020」深度學習開發者峰會到現在,飛槳平臺的開發者數量實現了大幅度的增長,達到了 265 萬。
  • 阿里雲開源的業界首個面向NLP場景深度遷移學習框架EasyTransfer
    近日,阿里雲正式開源了深度遷移學習框架EasyTransfer,這是業界首個面向NLP場景的深度遷移學習框架。該框架由阿里雲機器學習PAI團隊研發,讓自然語言處理場景的模型預訓練和遷移學習開發與部署更加簡單和高效。