Python離我們最近的案例可能是春運的時候程式設計師利用Python各種腳本的搶票源碼搶到回家的車票了。
其實,Python能做的不僅僅是搶票哦,今天小編就給大家總結了一些Python爬取各種東西的案例,讓你看看Python到底有多強大。
從網站某一個頁面(通常是首頁)開始,讀取網頁的內容,找到在網頁中的其它連結地址,然後通過這些連結地址尋找下一個網頁,這樣一直循環下去,直到把這個網站所有的網頁都抓取完為止。如果把整個網際網路當成一個網站,那麼網絡蜘蛛就可以用這個原理把網際網路上所有的網頁都抓取下來。
網絡爬蟲(又被稱為網頁蜘蛛,網絡機器人,在FOAF社區中間,更經常的稱為網頁追逐者),是一種按照一定的規則,自動的抓取全球資訊網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻,自動索引,模擬程序或者蠕蟲。
你需要學習:
基本的爬蟲工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom Filters by Example
如果需要大規模網頁抓取,你需要學習分布式爬蟲的概念。其實沒那麼玄乎,你只要學會怎樣維護一個所有集群機器能夠有效分享的分布式隊列就好。最簡單的實現是python-rq: https://github.com/nvie/rq
rq和Scrapy的結合:darkrho/scrapy-redis · GitHub
後續處理,網頁析取(grangier/python-goose · GitHub),存儲(Mongodb)
1)首先你要明白爬蟲怎樣工作。
想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種連結。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個連結鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新連結,你就先查查你腦子裡是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
2)效率
通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這裡的不確定性在你分配的內存足夠大的時候,可以變得很小很少。
注意到這個特點,url如果被看過,那麼可能以小概率重複看一看(沒關係,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一臺機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一臺機子不夠的話——用很多臺吧!當然,我們假設每臺機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多臺機器晝夜不停地運行了一個月。想像如果只用一臺機子你就得運行100個月了...
那麼,假設你現在有100臺機器可以用,怎麼用python實現一個分布式的爬取算法呢?
我們把這100臺中的99臺運算能力較小的機器叫作slave,另外一臺較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這臺master機器上,所有的slave都可以通過網絡跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的連結送到master的queue裡去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存裡,而被訪問過的url放到運行在master上的Redis裡,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)
4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(資料庫應該怎樣安排)
有效地判重(這裡指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)
有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜尋引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...
及時更新(預測這個網頁多久會更新一次)
當你這四步都能熟練掌握了之後,你還得熟練掌握對於一些有反爬網站得處理,這個我們下次介紹反爬你需要做的有哪些?然後覺得不錯的朋友給小編點個關注吧,非常感謝哦!