永磁直流伺服電機淺析,永磁伺服電機的熱阻與時間常數測試

2020-12-11 電子產品世界

  伺服電機可使控制速度,位置精度非常準確,可以將電壓信號轉化為轉矩和轉速以驅動控制對象。伺服電機(servo motor )是指在伺服系統中控制機械元件運轉的發動機,是一種補助馬達間接變速裝置。目前,在數控工具機進給驅動中採用的直流電動機主要是大慣量寬調速永磁式直流伺服電動機,本節將主要對這種電動機進行分析介紹。

本文引用地址:http://www.eepw.com.cn/article/201710/367378.htm

  1.永磁直流伺服電動機基本結構與特點

  這種電機的基本結構如圖所示,其同普通直流電動機的結構類似,也是由定子、轉子、電刷和換向器等組成。該種電動機的定子磁極是個採用鋁鎳鈷合金、釹鐵硼、或稀土鈷等材料所做成的永久磁體,矯頑力很高,能夠產生極大的峰值轉矩以滿足高的加、減速要求;且即使在較高的磁通密度下保持性能穩定(即不出現退磁)。轉子的鐵心上斜槽數目較多,且在一個槽內分布有幾個虛槽以減少轉矩波動。電刷的材料也經過仔細篩選,使得其可以在較大的加速度狀態下也有良好的換向性能。低波紋測速機等其它檢測元件如旋轉變壓器、脈衝編碼器可以裝在電動機軸上,從而可得到精密的速度和位置檢測信號,以反饋到速度控制單元和位置控制單元。該種電動機既具有一般直流電動機便於調速、機械性能較好的優點,又具有小慣量直流電機快速響應性能的優勢。

  

  2.永磁直流伺服電動機工作原理

  直流電動機工作原理的示意圖如圖所示。

  

  在轉子繞組中的任何一根導體,只要一轉過中性線,從定子S極下的範圍進入了定子N極下的範圍,由於電刷和換向器的作用,那麼這根導體上的電流一定要反向;反之則由定子N極下的範圍進入定子S極下的範圍時,導體上的電流也要發生反向。因此轉子的總磁勢正交,在轉子磁場與定子磁場相互作用下產生了電動機的電磁轉矩,從而使電動機轉動。

  機械特性是電機的靜態特性,是穩定運行時帶動負載的性能,此時,電磁轉矩與外負載相等。當電機帶動負載時,電機轉速與理想轉速產生轉速差Δn,它反映了電機機械特性的硬度,Δn越小,表明機械特性越硬,性能越好。

  永磁伺服電機的熱阻與時間常數測試

  熱阻是反應阻止熱量傳遞的綜合參數,電機熱阻是指從電機內的熱源(繞組、鐵心等)到冷卻介質之間對熱流的阻抗。熱時間常數又叫熱響應時間,電機的熱時間常數是指在恆定功耗的技術規定條件下,電機繞組溫升達到穩定值的63.2%所需時間。

  電機的熱模型包含了幾種熱時間常數,為了便於分析我們通常選用一種模型(圖1:電機熱模型)對熱時間常數及熱阻完成測試,下面本文對永磁伺服電機的熱阻測試和熱時間常數測試進行詳細介紹。

  1、永磁伺服電機熱阻、熱時間常數試驗條件

  測試試驗時為方便電機自身均勻散熱,被試電機可以在低速(低於5r/min)下運行,散熱板與其他接觸部分作隔熱處理。試驗在恆溫條件下進行。若是風機電機,試驗應在風機電機的規定的冷卻條件下進行。

  

  說明:

  P——功率損耗,單位為瓦特(W);

  TC——熱容,單位為焦每開(J/K);

  Rth——熱阻,單位為開每瓦(K/W)

  (△θ)a——在環境溫度下的溫升,單位為開(K);

  θa——環境溫度,單位為攝氏度(℃)。

  2、永磁伺服電機熱阻、熱時間常數試驗程序

  永磁伺服電機熱阻、熱時間常數試驗時依據以下步驟進行:

  (a) 用不大於最大連續電流值的電流驅動電機並使電機達到熱平衡狀態;

  (b) 確定溫升(△θ)a;

  (c) 用(△θ)a乘以0.368,結果加上環境溫度θa;

  (d) 將電源斷開,記錄電機的溫度下降到c)步驟計算出的溫度值所需的時間t;

  (e) 用P=I^2R計算功率損耗,式中I為電流值,R為溫度在θf時的繞組電阻。

  (f) 熱時間常數τth=TC*Rth,是在d)步驟中記錄的時間t,則熱阻Rth=(△θ)a/P,試驗過程中相關參數的確定可參見圖示2。

  

  說明:

  τth=——熱時間常數,單位為分(min);

  θf——熱穩定時的溫度,單位為攝氏度(℃);

  θa——環境溫度,單位為攝氏度(℃);

  θt——在t時刻的溫度,單位為攝氏度(℃)。


相關焦點

  • 永磁同步伺服電機驅動器原理
    永磁交流伺服系統的性能日漸提高,價格趨於合理,使得永磁交流伺服系統取代直流伺服系統尤其是在高精度、高性能要求的伺服驅動領域成了現代電伺服驅動系統的一個發展趨勢。現在,高性能的伺服系統,大多數採用永磁交流伺服系統其中包括永磁同步交流伺服電動機和全數字交流永磁同步伺服驅動器兩部分。伺服驅動器有兩部分組成:驅動器硬體和控制算法。控制算法是決定交流伺服系統性能好壞的關鍵技術之一,是國外交流伺服技術封鎖的主要部分,也是在技術壟斷的核心。
  • 什麼是伺服電機?伺服電機的內部結構及其工作原理
    伺服電機轉子轉速受輸入信號控制,並能快速反應,在自動控制系統中,用作執行元件,且具有機電時間常數小、線性度高、始動電壓等特性,可把所收到的電信號轉換成電動機軸上的角位移或角速度輸出。分為直流和交流伺服電動機兩大類,其主要特點是,當信號電壓為零時無自轉現象,轉速隨著轉矩的增加而勻速下降。
  • 伺服電機知識大匯總,值得收藏!
    直流伺服電機基本構造與一般直流電動機相似。電機轉速n=E/K1j=(Ua-IaRa)/K1j,式中E為電樞反電動勢,K為常數,j為每極磁通,Ua、Ia為電樞電壓和電樞電流,Ra為電樞電阻,改變Ua或改變φ,均可控制直流伺服電動機的轉速,但一般採用控制電樞電壓的方法,在永磁式直流伺服電動機中,勵磁繞組被永久磁鐵所取代,磁通φ恆定。
  • 淺析交流伺服電機的矢量控制
    伺服電機內部的轉子是永磁鐵,驅動器控制的U/V/W三相電形成電磁場,轉子在此磁場的作用下轉動,同時電機自帶的編碼器反饋信號給驅動器,驅動器根據反饋值與目標值進行比較,調整轉子轉動的角度。  上面我們聊了坐標變換與矢量控制結構,矢量控制的目的是控制伺服的同時,使電流與電壓的位相一致進而提高電力效率和電機轉矩的效率。下面我們再來了解下包括矢量控制在內的伺服控制結構。
  • 伺服電機工作原理
    導讀:本文主要介紹的是伺服電機的工作原理,也許你從來都沒有聽過伺服電機,但是沒有關係,就讓小編為大家解決這一難題吧,快來學習一下吧,很漲姿勢的哦~~~本文引用地址
  • 伺服電機控制能否代替步進電機控制,交流伺服電機與步進電機的區別...
    伺服電機(servo motor )是指在伺服系統中控制機械元件運轉的發動機,是一種補助馬達間接變速裝置。伺服電機可使控制速度,位置精度非常準確,可以將電壓信號轉化為轉矩和轉速以驅動控制對象。伺服電機轉子轉速受輸入信號控制,並能快速反應,在自動控制系統中,用作執行元件,且具有機電時間常數小、線性度高、始動電壓等特性,可把所收到的電信號轉換成電動機軸上的角位移或角速度輸出。
  • 直流伺服電動機的技術參數與特性參數,直流伺服電動機的特點特性及...
    直流伺服電動機是自動控制系統中具有特殊用途的直流電動機,又稱執行電機,它能夠把輸入的電壓信號變換成軸上的角位移和角速度等機械信號。
  • 直流電機知識:永磁勵磁和直流電機等效替代電路圖
    永磁勵磁方式在直流電機及同步電機、步進電機中用來工業伺服驅動,如汽車輔助驅動、辦公家電等驅動設備中應用。永磁體勵磁比電勵磁繞組體積更小、工作效率更高、動態性能更高,不過它的強磁材料價格昂貴、磁體的邊緣區域會有退磁現象及難以進行弱磁控制。
  • 【全面詳細】介紹伺服電機工作原理
    交流伺服電動機運行平穩、噪音小。但控制特性是非線性,並且由於轉子電阻大,損耗大,效率低,因此與同容量直流伺服電動機相比,體積大、重量重,所以只適用於0.5-100W的小功率控制系統。         同步電機大多用在大型發電機的場合。而異步電機則幾乎全用在電動機場合。
  • 伺服電機做負載的優勢
    伺服電機將電信號轉化為轉矩和轉速以驅動控制對象。伺服電機轉子轉速受輸入信號控制,並能快速反應,在自動控制系統中,用作執行元件,且具有機電時間常數小、線性度高、始動電壓等特性。       圖1  伺服電機可以進行電機對拖,公共直流母線採用單獨的整流/回饋裝置,為系統提供電能,調速用逆變器直接掛接在直流母線上,當系統工作在電動狀態時,逆變器從母線上獲取電能;當
  • 伺服電機的制動方式與原理,伺服電機的控制方法
    伺服電動機又叫執行電動機,或叫控制電動機。在自動控制系統中,伺服電動機是一個執行元件,它的作用是把信號(控制電壓或相位)變換成機械位移,也就是把接收到的電信號變為電機的一定轉速或角位移。其容量一般在 0.1-100W, 常用的是 30W 以下。伺服電動機有直流和交流之分。
  • 永磁無刷直流電機生產廠家|1.5KW永磁無刷直流電機的調速方式
    1.5KW永磁無刷直流電機的調速方式永磁直流無刷電機是生活中比較常見的一種電機,永磁直流無刷電機的特點想必大家都比較了解,高效率、恆轉矩、電機保護和調速控制,我們今天主要講永磁無刷直流電機的調速控制方式
  • 什麼是伺服電機,其工作原理和分類有哪些?
    伺服主要靠脈衝來定位,基本上可以這樣理解,伺服電機接收到1個脈衝,就會旋轉1個脈衝對應的角度,從而實現位移,因為,伺服電機本身具備發出脈衝的功能,所以伺服電機每旋轉一個角度,都會發出對應數量的脈衝,這樣,和伺服電機接受的脈衝形成了呼應,或者叫閉環,如此一來,系統就會知道發了多少脈衝給伺服電機,同時又收了多少脈衝回來,這樣,就能夠很精確的控制電機的轉動,從而實現精確的定位,可以達到0.001mm。
  • 永磁電機與永磁體
    我們今天以永磁直流電機和永磁同步電機為例,為大家簡要介紹永磁電機。1、永磁直流電機永磁直流電機的工作原理、結構與普通直流電機相似,只是用永磁體磁極代替用電流勵磁的磁極,以換向方式的不同可分為有刷電機和無刷電機,前者機械換向,後者電子換向。
  • 國外知名伺服電機/系統製造商盤點
    倫茨(德國) 倫茨(lenze)是世界上著名的機電傳動產品製造商,主要產品有直流調速裝置、交流變頻器、交流伺服、各類電動機、小型傳動轉置、減速箱、變速器、制動器、離合器等。該公司現役的產品MCM同步伺服電機主打機器人市場,結構緊湊、負載與電機慣量比佳、外殼平滑、簡單易用,適合包裝、搬運等應用場景。
  • 步進電機和直流伺服電機的十大優缺點
    步進電機是一種特殊的無刷直流電機,電磁線圈布置在電機的外部,電機的中心有一個鐵或磁芯附在軸上。通過對線圈電壓進行排序,可以以相對較低的成本實現精確的旋轉控制。控制通常是開環的,所以系統不知道電機是否失速或與控制器失去同步。
  • 基於TMS320F28035的永磁同步電機矢量控制系統研究
    永磁同步電動機(PMSM)具有體積小、重量輕、結構多樣、可靠性高等優點。在數控工具機、工業機器人等自動化領域得到了廣泛的應用。數位化交流伺服調速系統採用的是目前非常流行的矢量控制算法,即電壓空間矢量脈寬調製(SVPWM)。
  • 詳解步進電機和伺服電機聯繫和區別
    比如,當人們說2N.m的步進電機,在沒有特殊說明的情況下是指保持轉矩為2N.m的步進電機。 DETENT TORQUE:是指步進電機沒有通電的情況下,定子鎖住轉子的力矩。DETENTTORQUE 在國內沒有統一的翻譯方式,容易使大家產生誤解;由於反應式步進電機的轉子不是永磁材料,所以它沒有DETENTTORQUE。
  • 永磁無刷直流電機基本結構及工作原理
    伴隨著電子控制技術和永磁材料技術的迅速發展,永磁無刷直流電機逐漸發展成熟。由於它作為在電動車的驅動電機使用時,能較好地滿足電動車的各種性能要求,價格優勢明顯,所以很快成為了理想的電動車用驅動電機。如圖1所示為電動車上常用的永磁無刷直流電機,圖2所示為永磁無刷直流電機驅動的電動車。
  • 步進電機與伺服電機
    傳統步進電機與伺服電機的基本區別在於電機類型及其控制方式。步進電機通常使用50到100極無刷電機,而典型的伺服電機只有4到12極。極點是電機的一個區域,其中北極或南極磁極是由永磁體磁鐵或通過繞組的線圈通過電流產生的。