【專知薈萃26】行人重識別 Person Re-identification知識資料全集(入門/進階/論文/綜述/代碼,附查看)

2022-01-15 專知

點擊上方「專知」關注獲取專業AI知識!

【導讀】主題薈萃知識是專知的核心功能之一,為用戶提供AI領域系統性的知識學習服務。主題薈萃為用戶提供全網關於該主題的精華(Awesome)知識資料收錄整理,使得AI從業者便捷學習和解決工作問題!在專知人工智慧主題知識樹基礎上,主題薈萃由專業人工編輯和算法工具輔助協作完成,並保持動態更新!另外歡迎對此創作主題薈萃感興趣的同學,請加入我們專知AI創作者計劃,共創共贏!專知為大家呈送專知主題薈萃知識資料大全集薈萃 (入門/進階/綜述/視頻/代碼/專家等),請大家查看!專知訪問www.zhuanzhi.ai,  或關注微信公眾號後臺回復" 專知"進入專知,搜索感興趣主題查看。此外,我們也提供該文網頁桌面手機端(www.zhuanzhi.ai)完整訪問,可直接點擊訪問收錄連結地址,以及pdf版下載連結,請文章末尾查看!此為初始版本,請大家指正補充,歡迎在後臺留言!歡迎大家轉發分享~

行人重識別 Person Re-identification / Person Retrieval 專知薈萃入門學習

行人重識別綜述

基於深度學習的Person Re-ID(綜述)

鄭哲東 -Deep-ReID:行人重識別的深度學習方法

【行人識別】Deep Transfer Learning for Person Re-identification

知乎專欄:行人重識別 [https://zhuanlan.zhihu.com/personReid]

行人重識別綜述:從哈利波特地圖說起

行人再識別中的遷移學習:圖像風格轉換(Learning via Translation)

行人對齊+重識別網絡

SVDNet for Pedestrian Retrieval:CNN到底認為哪個投影方向是重要的?

用GAN生成的圖像做訓練?Yes!

2017 ICCV 行人檢索/重識別 接受論文匯總

從人臉識別 到 行人重識別,下一個風口

GAN(生成式對抗網絡)的研究現狀,以及在行人重識別領域的應用前景?

Re-id Resources

行人再識別(行人重識別)【包含與行人檢測的對比】

 行人重識別綜述(Person Re-identification: Past, Present and Future)

進階論文及代碼Person Re-identification / Person Retrieval

DeepReID: Deep Filter Pairing Neural Network for Person Re-Identification

An Improved Deep Learning Architecture for Person Re-Identification

Deep Ranking for Person Re-identification via Joint Representation Learning

PersonNet: Person Re-identification with Deep Convolutional Neural Networks

Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification

Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function

End-to-End Comparative Attention Networks for Person Re-identification

A Multi-task Deep Network for Person Re-identification

Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification

A Siamese Long Short-Term Memory Architecture for Human Re-Identification

Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification

Person Re-identification: Past, Present and Future

Deep Learning Prototype Domains for Person Re-Identification

Deep Transfer Learning for Person Re-identification

A Discriminatively Learned CNN Embedding for Person Re-identification

Structured Deep Hashing with Convolutional Neural Networks for Fast Person Re-identification

In Defense of the Triplet Loss for Person Re-Identification

Beyond triplet loss: a deep quadruplet network for person re-identification

Part-based Deep Hashing for Large-scale Person Re-identification

Deep Person Re-Identification with Improved Embedding

Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters

Person Re-Identification by Deep Joint Learning of Multi-Loss Classification

Attention-based Natural Language Person Retrieval

intro: CVPR 2017 Workshop [vision meets cognition]

keywords: Bidirectional Long Short- Term Memory [BLSTM]

arxiv: [https://arxiv.org/abs/1705.08923]

Unsupervised Person Re-identification: Clustering and Fine-tuning

Deep Representation Learning with Part Loss for Person Re-Identification

Pedestrian Alignment Network for Large-scale Person Re-identification

[https://raw.githubusercontent.com/layumi/Pedestrian_Alignment/master/fig2.jpg]

arxiv: [https://arxiv.org/abs/1707.00408]

github: [https://github.com/layumi/Pedestrian_Alignment]

Deep Reinforcement Learning Attention Selection for Person Re-Identification

Learning Efficient Image Representation for Person Re-Identification

Person Re-identification Using Visual Attention

Deeply-Learned Part-Aligned Representations for Person Re-Identification

What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification

Deep Feature Learning via Structured Graph Laplacian Embedding for Person Re-Identification

Divide and Fuse: A Re-ranking Approach for Person Re-identification

Large Margin Learning in Set to Set Similarity Comparison for Person Re-identification

Multi-scale Deep Learning Architectures for Person Re-identification

Pose-driven Deep Convolutional Model for Person Re-identification

HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis

intro: ICCV 2017. CUHK & SenseTime,

arxiv: [https://arxiv.org/abs/1709.09930]

github: [https://github.com/xh-liu/HydraPlus-Net]

Person Re-Identification with Vision and Language

Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification

Learning Deep Context-aware Features over Body and Latent Parts for Person Re-identification

Pseudo-positive regularization for deep person re-identification

Let Features Decide for Themselves: Feature Mask Network for Person Re-identification

Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification

AlignedReID: Surpassing Human-Level Performance in Person Re-Identification

intro: Megvii, Inc & Zhejiang University

arxiv: [https://arxiv.org/abs/1711.08184]

evaluation website: [Market1501]: [http://reid-challenge.megvii.com/]

evaluation website: [CUHK03]: [http://reid-challenge.megvii.com/cuhk03]

Region-based Quality Estimation Network for Large-scale Person Re-identification

Deep-Person: Learning Discriminative Deep Features for Person Re-Identification

A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

Person Search

Joint Detection and Identification Feature Learning for Person Search

intro: CVPR 2017

keywords: Online Instance Matching OIM loss function

homepage[dataset+code]:[http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html]

arxiv: [https://arxiv.org/abs/1604.01850]

paper: [http://www.ee.cuhk.edu.hk/~xgwang/PS/paper.pdf]

github[official. Caffe]: [https://github.com/ShuangLI59/person_search]

Person Re-identification in the Wild

intro: CVPR 2017 spotlight

keywords: PRW dataset

project page: [http://www.liangzheng.com.cn/Project/project_prw.html]

arxiv: [https://arxiv.org/abs/1604.02531]

github: [https://github.com/liangzheng06/PRW-baseline]

IAN: The Individual Aggregation Network for Person Search

Neural Person Search Machines

Re-ID with GAN

Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro

Person Transfer GAN to Bridge Domain Gap for Person Re-Identification

Vehicle Re-ID

Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals

Deep Metric Learning

Deep Metric Learning for Person Re-Identification

Deep Metric Learning for Practical Person Re-Identification

Constrained Deep Metric Learning for Person Re-identification

DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer

Re-ID with Attributes Prediction

Deep Attributes Driven Multi-Camera Person Re-identification

Improving Person Re-identification by Attribute and Identity Learning

Video-based Person Re-Identification

Recurrent Convolutional Network for Video-based Person Re-Identification

intro: CVPR 2016

paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/McLaughlin_Recurrent_Convolutional_Network_CVPR_2016_paper.pdf]

github: [https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID]

Deep Recurrent Convolutional Networks for Video-based Person Re-identification: An End-to-End Approach

Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification

Three-Stream Convolutional Networks for Video-based Person Re-Identification

Re-ranking

Re-ranking Person Re-identification with k-reciprocal Encoding

實戰項目

Open-ReID: Open source person re-identification library in python

intro: Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different datasets, a full set of models and evaluation metrics, as well as examples to reproduce [near] state-of-the-art results.

project page: [https://cysu.github.io/open-reid/]

github[PyTorch]: [https://github.com/Cysu/open-reid]

examples: [https://cysu.github.io/open-reid/examples/training_id.html]

benchmarks: [https://cysu.github.io/open-reid/examples/benchmarks.html]

caffe-PersonReID

DukeMTMC-reID_baseline Matlab

Code for IDE baseline on Market-1501

教程

1st Workshop on Target Re-Identification and Multi-Target Multi-Camera Tracking

鄭哲東 -Deep-ReID:行人重識別的深度學習方法

Person Identification in Large Scale Camera Networks Wei-Shi Zheng (鄭偉詩)

Person Re-Identification: Theory and Best Practice

綜述

Person Re-identification: Past, Present and Future Liang Zheng, Yi Yang, Alexander G. Hauptmann

Person Re-Identification Book

A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets

People reidentification in surveillance and forensics: A survey

數據集

Re-ID 數據集匯總

圖像數據集

Market-1501 Dataset 751個人,27種屬性,一共約三萬張圖像(一人多圖)

 DukeMTMC-reID DukeMTMC數據集的行人重識別子集,原始數據集地址(http://vision.cs.duke.edu/DukeMTMC/) ,為行人跟蹤數據集。原始數據集包含了85分鐘的高解析度視頻,採集自8個不同的攝像頭。並且提供了人工標註的bounding box。最終,DukeMTMC-reID 包含了 16,522張訓練圖片(來自702個人), 2,228個查詢圖像(來自另外的702個人),以及 17,661 張圖像的搜索庫(gallery)。並提供切割後的圖像供下載。

CUHK01, 02, 03

Attribute相關數據集

RAP

Attribute for Market-1501and DukeMTMC_reID

視頻相關數據集

Mars

PRID2011

NLP相關數據集:

自然語言搜圖像

自然語言搜索行人所在視頻

領域專家

Shaogang Gong -[http://www.eecs.qmul.ac.uk/~sgg/\]

Xiaogang Wang

Weishi Zheng

Liang Zheng

Chen Change Loy

Qi Tian

Shengcai Liao

Rui Zhao

Yang Yang

Ling Shao

Ziyan Wu

DaPeng Chen

Horst Bischof

Niki Martinel

Liang Lin

Le An

Xiang Bai

Xiaoyuan Jing

Fei Xiong

DaPeng Chen

初步版本,水平有限,有錯誤或者不完善的地方,歡迎大家提建議和補充,會一直保持更新,敬請關注http://www.zhuanzhi.ai 和關注專知公眾號,獲取第一手AI相關知識。

本文為專知內容組原創內容,未經允許不得轉載,如需轉載請發送郵件至fangquanyi@gmail.com 或 聯繫微信專知小助手(Rancho_Fang)

請PC登錄www.zhuanzhi.ai或者點擊閱讀原文,註冊登錄,頂端搜索「行人重識別」 主題,查看評論獲得專知薈萃全集知識等資料,直接PC端訪問體驗更佳!如下圖所示~

此外,請關注專知公眾號(掃一掃最下面專知二維碼,或者點擊上方藍色專知),

專知薈萃知識資料全集獲取(關注本公眾號-專知,獲取下載連結),請查看:

【專知薈萃】人工智慧領域25個主題知識資料全集(入門/進階/論文/綜述/視頻/專家等)

請掃一掃如下二維碼關注我們的公眾號,獲取人工智慧的專業知識!同時請加專知小助手微信(Rancho_Fang),加入專知主題群(請備註主題類型:AI、NLP、CV、 KG等)交流~

相關焦點