從少數樣本中發現稀有物體是一個新出現的問題。先前的研究表明元學習工是一個很有前途的方法。但是,微調技術還沒有引起足夠的重視。我們發現,在小樣本目標檢測任務中,僅對稀有類上現有檢測器的最後一層進行微調是至關重要的。這種簡單的方法比元學習方法在當前基準上的表現高出約2 ~ 20點,有時甚至比以前的方法的準確度還要高出一倍。然而,少數樣本的高方差常常導致現有基準的不可靠性。我們通過對多組訓練樣本進行抽樣,以獲得穩定的比較,並在PASCAL VOC、COCO和LVIS三個數據集的基礎上建立新的基準。同樣,我們的微調方法在修訂基準上建立了一種新的技術狀態。代碼和預訓練的模型可以在https://github.com/ucbdrive/few-shot-object-detection找到。
專知便捷查看
便捷下載,請關注專知公眾號(點擊上方藍色專知關注)