鋼材、金屬的脆性、成因及對策有哪些?

2020-12-18 steeltuber

鋼材鋼鐵等工程構件在韌性、塑性指標值較低的時候即表現為脆性。脆性失效往往沒有徵兆,危害卻常常是災難性的,所以應該儘量避免構件材料的脆性。

與熱處理有關的材料脆性有:回火脆性、低溫脆性、氫脆、 σ脆性和電鍍脆性等。本文分別闡述其成因及對策。

一、回火脆性

鋼件淬火成馬氏體後,在回火過程中,隨著回火溫度的升高,硬度和強度降低,塑性和韌性提高。但是在有些情況下,在某一回火溫度區間,韌性指標隨回火溫度的變化曲線存在低谷,表現出脆性現象。如圖1 所示。

圖中有兩個低谷,一個在200~400℃溫度區間,這類回火脆性在碳鋼和合金鋼中均會出現,它與回火後的冷卻速度無關,也就是說只要在這個溫區內回過火,脆性都無法避免。這種回火脆性稱為第一類回火脆性,也稱為不可逆回火脆性。另一類發生在某些合金結構鋼中,這些鋼在下面情況下發生脆化:

①高於600℃溫度下回火,而在450~550℃溫度區間冷卻緩慢。

②直接在450℃~550℃溫度區間加熱回火。

解決辦法是,重新加熱至600℃以上溫度回火,回火後快速冷卻(註:儘量避免在450~550℃區間回火)。

這種回火脆性稱為第二類回火脆性。

1.1 第一類回火脆性

這類脆性,其程度用夏比衝擊吸收功的低谷大小進行評定。應該指出的是:鋼的各類力學性能指標對第一類回火脆性具有不同的敏感程度,並與載荷方式有關。強度指標對回火脆性敏感度較小,塑性指標對回火脆性敏感程度較大,扭轉與衝擊載荷對回火脆性敏感程度大,而拉伸和彎曲應力對回火脆性敏感程度較小。因此,對於應力集中比較嚴重、衝擊載荷大或者受扭轉載荷的工件,要求較大的塑性、韌性和強度相配合時,第一類回火脆性應該按照一種熱處理缺陷對待。但對於應力集中不嚴重、承受拉伸、壓縮或彎曲應力的工件,例如某些冷變形工模具,其使用壽命主要取決於疲勞裂紋的萌生而不是裂紋擴展抗力。所以這種場合下並不一定把第一類回火脆性視為必須避免的熱處理缺陷,有時候甚至可以利用該溫度回火出來的強度(硬度)峰值,來達到發揮材料潛力、延長使用壽命的目的。

1.1.1 第一類回火脆性機理

現在已經發現,鋼的第一類回火脆性與殘餘奧氏體的轉變、馬氏體分解時沿晶界析出薄膜狀滲碳體以及S、P、N等雜質元素在晶界的偏聚有關。產生第一類回火脆性時,往往也伴隨著晶間斷裂傾向的增大,但有些鋼也在第一類回火脆性區觀察到穿晶解理或馬氏體板條間解理的方式斷裂。這表明第一類回火脆性機理隨具體鋼種而異。第一類回火脆性機理如圖2 所示。

當鋼的雜質和殘餘奧氏體量較少時,破壞起始於滲碳體的斷裂、滲碳體附近鐵素體膜的撕裂或滲碳體與基體界面的脫開,最終的斷裂方式主要為穿晶解理斷裂,參見圖2 a)。

如果鋼中殘餘奧氏體量較多,回火過程中,由於馬氏體的分解和外加載荷作用,殘餘奧氏體將因熱或者機械失穩轉變為新鮮馬氏體薄層,從而成為導致鋼脆化的主要因素,其斷裂方式為馬氏體板條間解理斷裂,參見圖2 b)。

在雜質含量較高的鋼和對脆性斷裂特別敏感的粗晶粒鋼中,由於S、P等雜質元素在奧氏體化加熱期間向晶界偏聚,以及在回火期間滲碳體薄層在晶間析出的綜合作用,導致晶界弱化使鋼脆化,其主要斷裂方式是晶間斷裂,參見圖2 c)。

上述三種機理對第一類回火脆性的產生共同起作用,其中主要的一種決定了最終的斷裂方式。

1.1.2 第一類回火脆性的抑制和防止

合理選材和熱處理工藝能夠抑制或防止第一類回火脆性的產生。從減少雜質元素在晶界偏聚的角度出發,冶煉純淨起其至關重要的作用。真空熔煉、電渣重熔等技術可從根本上減少鋼中磷、硫等有害雜質元素含量,也可以加入合金元素將有害雜質固定在基體晶內的方法以避免向晶界偏聚。例如,加入鈣、鎂和稀土元素,能夠減少硫在晶界的集聚。為了擴大高強度鋼的使用範圍,可以通過加入矽的方法推遲馬氏體的分解,提高第一類回火脆性的溫區。另外,形變熱處理、亞臨界淬火和循環熱處理等措施減小晶粒度,降低晶界的平均雜質含量,能夠減小鋼的第一類回火脆性。

採用工藝手段改變回火過程中析出的Fe3C形態,可以減小鋼的第一類回火脆性。例如:40CrNi鋼(即3140鋼)爐內回火和感應回火實驗結果表明,爐內回火在270℃左右出現明顯的第一類回火脆性,韌、脆轉化溫度為-50℃。感應回火則沒有出現第一類回火脆性,韌、脆轉化溫度降低到-135℃。電子顯微鏡和X射線分析後發現。270℃爐內回火的碳化物為長片狀,感應回火的碳化物現狀為均勻細球狀。

1.2 第二類回火脆性

圖3 為淬火鎳鉻鋼在400℃~650℃溫度區間回火時,回火後冷卻速度對衝擊吸收功的影響。可以看出,回火後的鋼在500℃~550℃附近發生了明顯的脆化,鋼在發生第二類回火脆性後,室溫衝擊韌性大幅度降低的同時,韌脆轉變溫度也顯著提高,如圖4所示 。

▲圖4 第二類回火脆性對韌脆轉變溫度的影響

1.2.1 影響第二類回火脆性的因素

1 化學成分

第二類回火脆性主要發生在Cr、Mn或Cr-Mn、Cr-Ni等合金鋼中。含Mn的質量分數少於0.5%的碳素鋼不發生這類回火脆性。Ni、Cr、Mn不論單獨加入還是複合加入鋼中,均會促進鋼的回火脆性,其影響按 Ni、Cr、Mn的順序增大,當他們複合加入時,影響更大。鋼中Cr、和Mn質量分數的總量超過1%時,即會發生明顯的高溫回火脆性。Ni單獨存在時,對鋼的回火脆性影響很小,但在Cr-Mn鋼中加入Ni卻顯著增大了高溫回火脆性的敏感性。

研究表明,高純合金鋼對回火脆性不敏感,因此,工業用鋼的回火脆性與雜質元素密切相關。P、As、Sb和Sn是引起鋼出現第二類回火脆性的主要元素。圖5 為雜質元素對Ni-Cr鋼脆化度影響。圖中縱坐標為脆化度,其定義是:使用夏比衝擊試驗測出鋼在無脆化狀態和脆化狀態下的韌-脆埠形貌轉變溫度FATT,然後取其差值。 由圖可見,Sb、P、的影響最大,Sn次之,As的影響相對較小。

脆化處理:450℃×168h

Mo能夠有效的抑制第二類會回火脆性的產生。圖6 為含Mo量對鋼的脆化度的影響。質量分數為0.2%~0.5%的Mo對回火脆性抑制作用最大,超過0.5%反而增大了鋼的回火脆性傾向。W和Ti也是抑制回火脆性的元素。

鋼的成分:C0.3%、Ni3%、Cr1%、P0.025%

脆化處理500℃×100h

2 其它因素的影響

並非只有馬氏體組織在回火過程中才產生高溫回火脆性,其它原始組織在高溫回火脆性區域回火也會產生不同程度的回火脆性。對第二類回火脆性的敏感程度按鐵素體-珠光體、貝氏體、馬氏體的順序增大。另外,鋼的回火脆性傾向隨奧氏體晶粒的增大而增大。

回火後冷卻速度對高溫回火脆性的影響很大。圖7 為回火冷卻速度對30CrNi3A鋼(即SN631鋼)的脆性影響,若規定出現50%脆性斷口的對應溫度為韌脆轉變溫度FATT,則用0.33℃/min的速度緩慢冷卻,鋼的FATT提高了100℃以上。

▲圖7 30Cr'Ni3A鋼的回火冷卻速度與脆性

1-4800℃/min 2-62℃/min

3-1.7℃/min 4--0.33℃/min

1.2.2 第二類回火脆性機理

被普遍接受的觀點是由於P、Sb、Sn、Mn、As等雜質元素和Cr、Ni、Mn、Si等合金元素在奧氏體晶界偏聚所引起。俄歇譜儀分析表明,回火脆性與奧氏體晶粒邊界附近雜質元素濃度升高有直接關係。雜質元素在晶界的偏聚屬於平衡偏析。雜質元素以固溶的方式存在於鋼中時,由於其原子與鐵原子間存在尺寸錯配,從減小晶格畸變能的角度看,雜質原子將優先佔據到晶界或位錯等缺陷部位,導致晶界的弱化和脆性增大。隨著溫度升高,這種平衡偏析受到原子熱運動的幹擾,溫度足夠高時(>600℃),平衡偏析消失。

這種平衡偏析在碳鋼中很小,不足以引起回火脆性。Cr、Mn、和Ni等合金元素與雜質元素的親和力大,促進了雜質元素在晶界上的這種偏析,因而顯著增大了鋼的高溫回火脆性。回火加熱溫度高於600℃,然後迅速冷卻,抑制了雜質元素向晶界的偏聚,因而減少或防止了回火脆性的發生。在有些合金鋼中,隨著含碳量是增加,鋼的回火脆性傾向增大,表明雜質元素在晶界的偏聚也與碳化物沉澱有關。

也有觀點認為,高溫回火脆性系由鋼中α固溶體在回火過程中時效沉澱處的Fe3C(N)對位錯質點型「強釘扎」作用引起的,而與雜質元素在晶界聚集無關。

1.2.3 第二類回火脆性的抑制和防止

為了防止第二類回火脆性,可採用如下措施:

1)提高鋼水純淨度,儘量減少鋼中P、Sb、Sn、As等有害雜質元素的含量,從根本上消除或減小雜質元素在晶界的偏聚。

2)鋼中添加Mo(w 0.2~0.5%)或W(w 0.4%~1.0%),以延緩P等雜質元素向晶界的偏聚。這種方法在生產上得到了廣泛的應用,如汽輪機主軸、葉輪和厚壁壓力容器廣泛採用Mo鋼來製造。這種合金化的方法具有局限性,對於那些在回火脆性溫度下長期使用的工件,仍不能避免回火脆性問題的發生。

3)高溫回火後快速冷卻。對於大型工件,由於心部冷速達不到要求是這種方法受到限制。另一方面即使能夠通過快速冷卻抑制脆性發生,但又會在工件中產生很大的殘餘應力,故對於大型工件,往往需要採用低於回火脆性溫度(450℃)進行補充回火。

4)採用兩相區淬火,以便使組織中保留少量細條狀過剩鐵素體這些鐵素體在加熱時往往在晶粒內雜質處形核析出,是雜質元素集中於鐵素體內,避免了它再想解決偏聚;另外,兩相區淬火可以獲得細小晶粒,從而減輕和消除了回火脆性。

5)細化奧氏體晶粒。

6)採用高溫形變熱處理可以顯著減小甚至消除鋼的回火脆性。圖8 為高溫形變熱處理對40CrNi4鋼衝擊韌度的影響。可以看出來,採用高溫形變熱處理,回火脆性基本可以消除。

▲圖8 40CrNi4鋼的衝擊韌度隨回火溫度的變化

1-常規淬火工藝 2-高溫形變熱處理

7)滲氮需要在500℃左右溫度下長時間加熱,容易產生回火脆性問題。滲氮鋼應當儘量選用對回火脆性敏感度較低的含Mo鋼,如38CrMoAl等。

8)焊接構件焊接後往往需要進行無應力退火。由於退貨必須緩慢冷卻,所以對於含Mn、Cr、Ni、Si等合金元素的高強度鋼,必須考慮去應力退貨引起的回火脆性問題。對於這類構件,也應選用含鉬的鋼製造。

二、低溫脆性

低溫脆性斷裂包括穿晶斷和沿晶界的晶間脆斷兩種斷裂方式。穿晶脆斷主要是解理斷裂。常見的低溫脆性斷裂大多數是沿解理面的穿晶斷裂;而晶間脆斷通常在應力腐蝕或發生回火脆性的情況下出現。

溫度是影響金屬材料和工程結構斷裂方式的重要因素之一。許多斷裂事故發生在低溫。這是由於溫度對工程上廣泛使用的低中強度結構鋼和鑄鐵的性能影響很大,隨著溫度的降低,鋼的屈服強度增加韌度降低。體心立方金屬存在脆性轉變溫度是其脆性特點之一。隨著溫度降低,在某一溫度範圍內,缺口衝擊試樣的斷裂形式由韌性斷裂轉變為脆性斷裂,這種斷裂形式的轉變,通常用一個特定的轉變溫度來表示,該轉變溫度在一定意義上表徵了材料抵抗低溫脆性斷裂的能力。這種隨溫度降低材料由韌性向脆性轉變的現象稱作低溫脆脆性或冷脆、

2.1 低溫脆性的評定

低溫脆性通常用低溫脆性轉變溫度來評定。脆性轉變溫度的工程意義在於,在高於該溫度下服役,構件就不會發生脆性斷裂。很明顯轉變溫度越低,鋼的韌度越大。脆性轉變溫度用夏比衝擊試驗轉變溫度曲線確定。圖9 為夏比衝擊試驗轉變溫度曲線示意圖。使用轉變溫度曲線進行工程設計時,關鍵是根據曲線確定一個合理的脆性轉變溫度。不同的工程領域採用不同的方法來確定韌脆轉變溫度。這些方法有能量準則、斷口形貌準則和經驗準則。

▲圖9 夏比衝擊試驗轉變溫度曲線

)對應溫度T3 和下平臺 Akmax的最高溫度(完全解理開裂最高溫度)。經驗準則確定的轉變溫度示意圖如T4 。例如,使用經驗和統計資料表明,如果船用鋼板的Ak值超過20.5J,將不會發生脆性斷裂,因此,造船工業廣發採用20.5J準則。對於常見的機械零件、大型鑄鍛件和焊接件,經驗表明,夏比衝擊試驗與機件失效之間存在如下關係:夏比衝擊試樣的解理埠面積不小於70%時,構件的服役應力低於鋼的屈服強度的二分之一時,在相應的溫度下,一般不會發生脆性斷裂,故規定夏比衝擊吸收功與溫度關係曲線上,試樣埠上出現50%解理埠和50%纖維埠的相應溫度為韌脆轉變溫度,稱為FATT。

2.2 鋼的成分和組織對低溫脆性斷裂的影響

鋼的FATT和韌度受多種因素影響。隨著溫度的降低和工件的有效尺寸、加載速率及應力集中的增大,脆性斷裂傾向增大。這些因素屬於外部因素,與熱處理無關。鋼的成分和組織是影響低溫脆性的內部因素。鋼的成分包括含碳量、合金元素含量和雜質。整體熱處理只能改變成分分布,不能改變鋼的成分組成;但是鋼的組織卻可以通過熱處理工藝手段予以改變和控制,因而熱處理的質量在一定程度上決定著鋼的低溫脆性傾向。

2.2.1 合金元素和雜質的影響

鋼中碳含量增加使韌脆轉變溫度升高,最大夏比衝擊能減小,夏比衝擊能隨溫度的變化趨勢如圖10所示。研究表明,碳含量對韌脆轉變溫度的影響與組織狀態有關。碳含量對珠光體、貝氏體組織的韌度影響很大而對馬氏體組織的韌度影響較小。

▲圖10 碳含量對鋼的的韌脆轉變溫度的影響

在低於韌脆轉變溫度時,碳對馬氏體的韌度幾乎沒有什麼影響。Mn和Ni能夠減小鋼的低溫脆性和降低韌脆轉變溫度。Mn能顯著改善鐵素體-珠光體鋼的韌度,但對調質鋼的韌度的影響比較複雜。從提高淬透性的角度,Mn對改善韌度有好處,但是Mn增大了回火脆性傾向,對韌度帶來不利影響。除Ni和Mn外,鐵素體形成元素均有促進鋼的脆化傾向。P、Cn、Si、Cr、Mo等元素使脆性轉變溫度升高;少量的V、Ti使鋼的FATT升高,超過一定量時,反而使FATT降低。微量的S、P、As、Sn、Pb、Sb等雜質元素及N2、O2、H2等氣體增大了鋼的低溫脆性。一般認為微量的有害元素往往偏析於晶界,降低了晶界表面能,弱化了晶界,增大了晶界脆性斷裂的傾向,降低了鋼的脆性斷裂抗力。

2.2.2 組織的影響

細化晶粒可以同時提高鋼的強度和低溫韌度。總的趨勢是鋼的韌脆轉變溫度隨奧氏體晶粒尺寸、馬氏體晶體和馬氏體板條束尺寸、貝氏體鐵素體板條束尺寸及珠光體片間距的減小而降低。鋼中夾雜物、碳化物等第二相顆粒的大小、形狀分布及第二相的性質對低溫脆性有重要影響。第二相顆粒宜細、宜勻、宜圓。晶界上的第二相和碳化物顯著降低鋼的低溫韌度。

鋼的成分相同顯微組織不同,其韌度和韌脆轉變溫度也不同。例如40~70mm的17MnCu鋼板經910℃正火與熱軋態相比,其衝擊韌度得到顯著改善,如圖11 所示。

▲圖11 正火對16MnCu鋼低溫韌度的影響

圖12 為組織對42CrMo鋼的脆性轉變溫度和衝擊韌度的影響,其韌度按鐵素體-珠光體、貝氏體、馬氏體的順序增高。

▲圖12 組織對42CrMo鋼韌脆轉變溫度的影響

研究表明,回火至相同硬度下,完全淬透的100%馬氏體回火後韌度最好。在獲得相同強度的情況下,鋼的衝擊韌度與組織的關係見圖13 。

▲圖13 不同淬火組織回火後抗拉強度與衝擊值的關係

鋼中的組織參量對材料韌度有不同影響。表1 為鋼的組織參量與韌度的關係。

▼表1 鋼的組織參量與韌度

三、氫脆

3.1 氫脆及其分類

金屬材料中由於含有氫或在含氫的環境中工作,其塑性和韌度下降的現象稱為氫脆。儘管也有例外,但在大多數情況下發生氫脆時,材料的斷裂方式由韌性斷裂轉變為脆性斷裂。氫在體心立方金屬中溶解度很小,但是擴散速度極大,因此,對氫脆的敏感性也最大。當鋼中含氫量達到5~10×

時,即會氫致開裂。面心立方技術也會發生氫脆,但相對來說,氫脆敏感性較小。

氫脆分為內部氫脆和環境氫脆、可逆氫脆和不可逆氫脆。金屬材料在冶煉、酸洗、焊接、電鍍、熱處理等工藝過程中引進了大量的氫,使材料在受到外載荷作用時,因內部已經存在的氫而發生的氫脆稱為內部氫脆;氫脆現象能夠通過去氫處理減小或去除時,稱為可逆氫脆;如果請已經造成了材料的永久性損傷,及時經過去氫處理氫脆現象也不能消除的情況,稱為不可逆氫脆。根據變形速度對氫脆敏感性的抑制,可將氫脆分為第一類氫脆和第二類氫脆。前者隨變形速度的增加,氫脆的敏感性增大,這是由於加載前材料內部已經存在白點、氫蝕和氫化物致裂等氫脆斷裂源的緣故;後者敏感性隨變形速度的減小而增加,其氫脆斷裂源是在服役過程中,環境中的氫與應力交互作用而形成的。

目前關於氫脆的機理有不同的觀點。已經提出的氫脆理論主要有氫壓理論、氫降低原子間結合力理論、氫吸後降低表面能理論以及氫促進局部塑性變形的理論。應該指出的是,與氫有關的材料損傷包括氫致塑性的損失、氫致滯後開裂和不可逆氫損傷(如氫鼓包、白點、高溫氫腐蝕、氫致馬氏體相變等)。嚴格的講氫脆性主要指氫致塑性損傷和氫致滯後開裂,而不可逆氫損傷是與氫脆具有不同機理的開裂方式。

氫脆是一個複雜的物理、化學、力學過程,影響因素很多。溫度、應變速率、氫壓和介質都對材料的氫脆行為有影響;但是對於熱處理工作者,為了防止和減少氫導致的脆性開裂,研究和掌握材料的成分和組織對氫脆影響規律更為重要。

3.2 鋼的成分和組織對氫脆的影響

合金元素對氫脆敏感性的影響與氫脆性質和鋼種有關。例如,高強度鋼對內部氫脆和環境氫脆都很敏感;而低強度鋼、奧氏體鋼和鎳基合金對內部氫脆不敏感;而其環境氫脆傾向性卻比較大。Mn顯著增大了鐵素體與馬氏體鋼的氫脆傾向,而對奧氏體鋼的氫脆影響相對較小。研究表明,C、P、S、Si增大了鋼的氫脆傾向。鋼中某些稀土元素(如Pd、Ta、La、Sc)和碳化物形成元素(Ti、V、Al、Nb、Zr等)能夠增加氫陷阱的數量,降低陷阱中富集的氫含量;加Ca或稀土元素能夠改變MnS夾雜的形狀,使其變圓變細,因而能夠增加氫陷阱中的臨界氫濃度;Cu、Al等元素能夠在金屬表面形成沉澱或氧化膜,阻礙環境中親情的進入。Cu、Al、Ti 和稀土元素通過上述機制減小了鋼對氫脆的敏感性。合金元素對鋼的氫致裂紋擴展行為的影響如表2 所示。

▼表2 鋼中合金元素對氫致裂紋擴展行為的影響

氫脆的敏感性與金相組織密切相關。對於中低碳鋼,淬火回火馬氏體或貝氏體組織具有最好的抗氫脆性能。對於珠光體鋼,其氫脆性能隨珠光體的層間距減小而提高。多數研究表明,球狀珠光體對氫脆和氫致滯後開裂的敏感性比片狀珠光體小。高碳淬火馬氏體的氫脆敏感性最大,不發生回火脆性時,隨著回火溫度的升高

其抗氫脆性能得到改善。一般認為,對於低合金超高強度鋼,碳化物顆粒聚雲分布的細小板條狀馬氏體具有最好的抗氧化性能。

熱處理能改變鋼的微觀組織,當然也影響鋼的氫脆敏感性。圖14 為固溶溫度對18Ni(250)鋼氫脆敏感性的影響。

▲圖14 固溶處理對18Ni(250)鋼塑性的影響

固溶溫度升高對剛在真空中的塑性影響很大,而在含氫環境下,其塑性大幅度下降。溫度超過900℃,其斷面收縮率降低到5%以下。

四、σ脆性

高鉻鐵素體不鏽鋼、鐵素體-奧氏體不鏽鋼、奧氏體不鏽鋼和耐熱鋼,在550℃~800℃之間長時間加熱會析出σ相,從而使鋼的脆性增大。σ相是成分範圍很寬的Fe-Cr金屬件化合物,目前還未測出σ相的上下限成分,其大多數成分可近似的表示為FeCr。σ相不僅在許多過渡族元素組成的二元合金中形成,在不少三元系中在某些特定的溫度範圍內,也發現有σ相存在。在高溫合金中,也發現的二元σ相有Fe-Cr-Ni、Fe-Cr-Mo、及Ni-Cr-Mo三元系中,在某些特定溫度範圍內,也有發現σ存在。在高溫合金中,也發現二元σ相有FeCr、CoCr、FeMo,三元系σ相如FeCrMo、NiCrMo、和四元系(CrMo)x(NiCo)y 等。

4.1 σ 相的性質及其對性能的影響

σ相的結構很複雜,屬於正方晶系。晶胞中有30個原子,點陣常數為a=8.75~8.81kX,c=4.54~4.58kX(1kX=1.002027×

m),c/a=0.52,某些 σ 相中各類原子呈有序排列。σ 相硬度很高,Fe-Cr系不鏽鋼中,σ 相的硬度為86HRC其它合金中的 σ 相的硬度略有波動。σ 相很脆,試問下脆如玻璃。σ 相沿晶界或呈片狀分布時,使鋼的韌性和韌度顯著下降。少量的 σ 相形成使基體貧鉻,因而使基體的抗蝕性下降,並降低了固溶強化的效果。

4.2 鋼的成分、熱處理與 σ 相的形成

σ 相通常在高鉻鋼中形成。一般認為鉻的質量分數小於%的不鏽鋼,σ 相的形成傾向很小。σ 相形成速度很慢。因此有些合金在使用前雖然沒有 σ 相,但在550℃~800℃ 溫度下長期使用時,卻可能因為 σ 相的逐步形成而導致性能惡化使工件早期失效。 在高鉻不鏽鋼、鎳鉻不鏽鋼及耐熱鋼中,鉻含量越高,越易形成σ 相,鉻的成分超過45%時,σ 相的形成傾向最大。Si、P、Mo、V、Ti、Nb等元素能夠促進σ 相的形成;Mn使 σ 相脆性的極限Cr含量降低,因此,Cr-Mn-N不鏽鋼中,比較容易出現 σ 相。

σ 相能從奧氏體中直接析出,也能從 δ 鐵素體中形成。研究表明,由於 δ 鐵素體的鉻含量較高,加上Si、Mo等鐵素體形成元素富集於鐵素體,促進了 σ 相的形成,因而從 δ 鐵素體轉變為 σ 相比較容易。δ 鐵素體形成 σ 相的過程很複雜,一般認為他首先形成少量細小的奧氏體,然後在 δ 中析出細小的碳化物,並在γ/δ相界上析出 σ 相。

合理的熱處理工藝可以抑制 σ 相的形成。對於奧氏體不鏽鋼,固溶處理溫度不宜過高,保溫時間不宜過長,以便使鋼中不產生過量的 δ 鐵素體而增大 σ 相的形成傾向。若在鑄造、焊接和熱處理過程中,產生了有害的 σ 相,可在820℃以上溫度加熱或採用固溶處理予以消除。消除 σ 相的熱處理溫度根據鋼的成分試驗確定。

鐵素體-奧氏體復相不鏽鋼,其金相組織為鐵素體基體上分布有小島狀奧氏體,δ 鐵素體的體積分數約佔50%~70%,由於這類鋼含有較多 δ 鐵素體,σ 相析出傾向較大,故使用溫度不宜超過350℃。

五、電鍍脆性

電鍍脆性的實質是鍍前處理和電鍍過程中,由於鍍層和金屬基體中滲入氫引起的氫脆性。電鍍是一種電化學過程。電鍍時被保護的基體金屬或工件作為陰極,施鍍的金屬為陽極,並發生還原反應,在沉積出金屬原子的同時,氫離子被還原成氫原子 ,其中一部分氫原子形成氫氣逸出,另一部分滲入到鍍層和基體金屬晶格中引起氫脆。電鍍前工件表面要進行精整和清理,如機械磨管、除油和浸蝕等處理。電化學除油和用酸進行化學浸蝕過程中,都有可能因為析出氫而使鍍層和工件發生氫脆。

5.1 電鍍脆性的影響因素

電鍍工件的氫脆受基體材料和電鍍工藝參數的影響,一般規律如下:

5.1.1 不同的基體金屬材料具有不同的陰極滲氫傾向。一般認為:按Pd、Ti、Cr、Mn、Fe、Co、Ni、Zn、Sn、Cu的順序,滲氫程度遞減。

5.1.2 隨著電流目的的升高,一方面陰極表面吸附氫原子的覆蓋率增大,使滲氫率增加;另一方面提高電流密度往往使鍍層質量和結構變化,從而使滲氫量減少,因此,有時隨電流密度的變化,滲氫率會出現極大值。

5.1.3 一般情況下,滲氫量隨著鍍液溫度的升高而下降。例如,鍍鉻時在電流密度為50A/dm,溫度分別為35℃、55℃和80℃的條件下,鍍鉻層氫的質量分數分別為0.07%、0.05%和0.03%。

5.1.4 溶液的PH值對申請的影響比較複雜。PH值下降,溶液中氫離子濃度增大,促進了滲氫過程進行,但是酸性鍍液的電流效率高,產生的總氫量較少,又能減輕滲氫量。另外PH值的變化影響鍍層中夾雜物的組成和滲氫過程。因此,PH值對滲氫量的影響沒有簡單的規律,取決於多種因素的共同作用。

5.1.5 電鍍溶液的組成不同,獲得的電鍍層成分和結構也不同,從而對申請也有影響。

5.2 防止電鍍脆性的措施

除了合理選擇電鍍層和控制工藝參數以減少申請量外,電鍍後除氫處理是消除電鍍脆性的主要辦法。廣泛使用的除氫處理工藝是加熱烘烤。電鍍件常用的除氫處理烘烤溫度為150℃~300℃,保溫2~24小時。具體的處理溫度和時間應根據工件大小、強度、鍍層性質和電鍍時間長短而定。除氫處理常在烘箱內進行。

鍍鋅工件的除氫處理溫度為110℃~220℃,控制溫度的高低應根據基體材料確定。對於彈性材料、0.5mm以下的薄壁件及機械強度要求較高的鋼鐵零件,鍍鋅後必須進行除氫處理。為了防止「鎘脆」,鍍鎘工件的除氫處理溫度不能太高,通常為180℃~200℃。「鎘脆」在常溫下即會發生,但當溫度超過200℃時,「鎘脆」問題變得更為嚴重。

六、滲層脆性

對於高硬度滲層,如滲氮表面硬度可達HV1100~1200,滲硼層硬度高達HV1300~2000,熱處理不放還可能產生滲層脆性過大,導致早期剝落。

6.1 滲氮層脆性

滲氮層脆性常用維氏硬度法檢查評定,GB11354-xxxx《鋼鐵零件滲氮層深度測定和金相組織檢驗》中規定,根據維氏硬度壓痕邊角破碎程度,滲層現在分為5級,如表 3 所示。

▼表3 滲氮層脆性級別

氮化層脆性過大可能的原因是:

1)液氨含水量過高,吸溼劑失效未及時更換或未進行再生處理造成脫碳引起。

2)單花錢工件表面脫碳層未全部加工掉,在化合物層和白亮層之間產生針狀化合物。

3)氨分解率過低,工件表面氮含量過高,形成脆性 ε 相,或者雖然進行過退氮處理,但工藝不當。

4)滲氮溫度過高,氮含量過高,形成嚴重的網狀組織。

5)工件預備熱處理不當,組織粗大或油裡鐵素體過多,造成滲層針狀組織網網狀組織。

6)工件有尖角、銳角、表面太粗糙,經常出現網狀組織。

氮化層脆性檢查如有超標現象,可以採用如下方法之一進行補救:

1)進行退氮處理,工藝是500℃~520℃,氨分解率≥80%,保溫3~5小時。

2)磨削加工去除白亮層。

6.2 滲硼層脆性

評價滲硼層脆性的方法是根據其脆斷損壞和剝落損壞的不同而異。「脆斷脆性」可用三點彎曲聲發射測得的脆斷強度來衡量。用砂輪磨削可測試剝落傾向,可用衡量「剝落脆性」。

具有FeB和Fe2B兩相組織的滲層容易產生剝落損壞,而具有單相fe2b組織的滲層容易產生脆性損壞。

減少滲硼層脆性的途徑:

1 選擇合適的滲硼工藝,力求獲得單相Fe2B單相組織。

2 進行合適的滲後熱處理

滲硼後採用恰當的熱處理,一定程度上可以減少滲層的脆性。輕載工件不會產生剝落,滲硼後空冷即可。重載零件,滲硼後必須就那些淬火和回火。基體硬度高於HRC40以上,可以避免發生凹陷。為了減輕脆性應兼顧脆斷脆性和剝落脆性。回火溫度提高,基體比體積減小,表面殘餘壓應力增大,這對脆斷脆性有利,對剝落不利。為了防止剝落失效,回火溫度應低一些。回火溫度的選擇,應根據滲硼零件在實際服役條件中的失效形式而定。

過高的淬火加熱溫度和強烈的淬火介質,均易產生裂紋和剝落缺陷。因此合理地選擇加熱溫度和淬火介質。對防止脆性有一定的意義。

相關焦點

  • 鋼材的熱處理組織缺陷與預防對策
    本站之前發表過文章:鋼管等鋼材的鋼的低倍組織缺陷識別及解決方法 鋼管熱處理的主要質量缺陷 鋼管熱處理表面脫碳及其預防對策 等文章,今天我們再來學習一下熱處理的組織缺陷與預防對策。一、組織與性能的關係金屬零件通過熱處理獲得一定的組織,以期達到要求的使用性能。
  • 鋼材元素成分和類級別大全
    最近,網編在網上看到很多這樣的問題:「鋼材的元素成分都有哪些?和鋼材中的I、Ⅱ、Ⅲ、Ⅳ類代表的什麼?」根據中華標準件進過詳細的總結,告訴大家有關鋼材元素成分和類級別的詳細介紹。 十二、鈮(Nb):鈮能細化晶粒和降低鋼的過熱敏感性及回火脆性,提高強度,但塑性和韌性有所下降。在普通低合金鋼中加鈮,可提高抗大氣腐蝕及高溫下抗氫、氮、氨腐蝕能力。鈮可改善焊接性能。在奧氏體不鏽鋼中加鈮,可防止晶間腐蝕現象。 十三、鈷(Co):鈷是稀有的貴重金屬,多用於特殊鋼和合金中,如熱強鋼和磁性材料。
  • 鋼材材質成分有哪些?
    鋼材是鐵、碳和少量其它元素的合金。不鏽鋼或者 10.5% 或以上鉻金含量的抗腐蝕性合金鋼是該類金屬的通用術語。應該記住不鏽鋼並不是說這種鋼材不生鏽或不會被腐蝕,而只不過是它比不含鉻的合金的耐腐蝕性能強得多。 除了鉻金屬之外,其它金屬元素如鎳、鉬、釩等也可以加入合金中用於改變合金鋼的性能,從而生產出不同等級、不同性能的不鏽鋼。
  • 多邊談判僵局:成因與對策
    書名:多邊談判僵局:成因與對策   作者:[英]阿姆裡塔·納利卡 (Amrita Narlikar) 主編本書首次在學理上嚴謹定義了"僵局"的含義和類型,並針對多邊談判僵局成因開創性地提出六種假說,這對談判理論建構和談判實務操作都具有重大價值。本書的獨特價值在於,通過深入考察僵局問題,促進我們更進一步、更具體地深入理解談判問題。無論是談判領域的學生、研究人員、教師或學者,還是從事談判和外交工作的人員,都會對本書產生興趣。
  • 企業所得稅零申報的成因分析與徵管對策
    企業所得稅零申報的成因分析與徵管對策
  • 建造師-金屬材料的類型及應用
    Q460 (低合金結構鋼)【答案】D 【解析】Q460低合金結構鋼,自主研發,國內在鋼結構首次使用,鋼板厚度達到110mm, 是A、B、C、D四個選項中承載力最大的鋼材。真題1: (2014年案例)【背景】鋼廠提供的低合金結構鋼還應有哪些綜合力學性能?
  • 鋼材的原材料與生產工藝(三)
    對要求高的鋼種可增加底吹氬、RH真空處理、噴粉處理(噴SI—CA粉及變性石灰)可以有效降低鋼中的氣體與夾雜,並有進一步降碳及降硫的作用。在這些爐外精煉措施後還可以最終微調成份,滿足優質鋼材的需求。大部分鋼材加工都是通過壓力加工,使被加工的鋼(坯、錠等)產生塑性變形。根據鋼材加工溫度不同以分冷加工和熱加工兩種。鋼材的主要加工方法有:軋制:將金屬坯料通過一對旋轉軋輥的間隙(各種形狀),因受軋輥的壓縮使材料截面減小,長度增加的壓力加工方法,這是生產鋼材最常用的生產方式,主要用來生產型材、板材、管材。分冷軋、熱軋。
  • 不鏽鋼鋼材成型和熱處理工藝的概念
    不鏽鋼鋼材成型和熱處理工藝的概念冷加工:在冷加工的幫助下,金屬得到了增強,這是通過對金屬進行塑性加工來實現的。變形導致較高的位錯網絡密度,從而實際上增強了金屬。脆性,剛性和硬度降低,但延展性增強。熱加工過程:在熱加工過程中,金屬不會進行應變硬化,因此應變硬化只能在冷加工過程中實現。退火:退火被更具體地稱為熱處理工藝。在其中將金屬加熱到指定溫度以減輕材料的負擔,並使材料軟化並改變其性能。熱退火過程增加了延性,而冷加工過程減少了延性。
  • 不鏽鋼換熱管為什麼會出現脆性斷裂?
    不鏽鋼換熱管尤其是奧體式不鏽鋼換熱管,有著良好的耐腐蝕性和耐氧化性,但其在使用過程中還是會出現脆性斷裂情況,那麼,你可知道,什麼是脆性斷裂?不鏽鋼換熱管出現脆性斷裂的原因是什麼?下面,東燕節能就帶大家了解一下不鏽鋼換熱管的脆性斷裂。
  • 今日鋼材價格表 鋼材價格多少錢一噸
    鋼材一般應用比較廣泛,很多都用於建築居多,但是不同的品種應用的方向和價格也有鎖不同,那麼鋼材的價格貴嗎?今日鋼材價格表怎麼樣?鋼材分幾種?鋼材價格多少錢一噸?鋼材價格多少錢鋼材應用廣泛、品種繁多,根據斷面形狀的不同,鋼材一般分為型材、板材、管材和金屬製品四大類。
  • 青少年犯罪的成因及預防對策
    因此,認真思考和探討青少年犯罪問題,並提出相應的預防和治理對策,對青少年的健康成長,對家庭的和睦穩固、學校的寧靜、社會的穩定,都有著非常重要的現實意義和深遠的歷史意義。筆者結合山東省棗莊市嶧城區人民法院近幾年來審理的青少年犯罪案件,對青少年犯罪的規律性及其特點進行分析,從多個角度探尋原因並提出預防對策。
  • 【資料】金屬熱處理之正火、退火、淬火、回火的區別與聯繫
    回火是將淬火後的金屬成材或零件加熱到某一溫度,保溫一定時間後,以一定方式冷卻的熱處理工藝,回火是淬火後緊接著進行的一種操作,通常也是工件進行熱處理的最後一道工序,因而把淬火和回火的聯合工藝稱為最終熱處理。淬火與回火的主要目的是:1)減少內應力和降低脆性,淬火件存在著很大的應力和脆性,如沒有及時回火往往會產生變形甚至開裂。
  • 【教育雜談】小學高年級學生逆反心理的成因與對策
    一、小學高年級逆反心理的成因1.在學校方面的成因在小學高年級的生活環境中學校是非常重要的,對學生的心理狀態有著極大的影響,而在學校教育中由於不適當的教學方法,就很有可能讓學生產生逆反心理,部分教師在教學中總是以應付差事的想法進行教育,沒有認真對學生進行教育和交流,使得課堂教學中枯燥乏味,就很有可能讓學生產生逆反心理,還有的教師對待學生過於粗暴,平常教育中經常對學生進行訓斥和批評
  • 幼兒告狀行為的成因及對策的研究
    查看完整論文請+Q: 351916072 關鍵字:告狀行為形成原因對策目 錄一、選題緣由 1(一)問題的提出 1(二)研究的目的和意義 1二、相關研究現狀 2(一)概念的界定 2(二)告狀行為的特點 2(三)告狀行為的成因 4三、研究過程 5
  • 金屬成分分析是什麼?金屬材料檢測項目有哪些?
    金屬成分分析是指利用大型分析檢測儀器對金屬材料或製品進行分析檢測,確定其成分和含量,用於了解金屬的材質和質量。3.鋼材成分分析碳素結構鋼、低合金鋼、鋼筋鋼、易切結構鋼、彈簧鋼、滾動軸承鋼、碳素工具鋼、合金工具鋼、高速工具鋼和高電阻合金鋼等鋼材。
  • 不合格鋼材有「四宗罪」
    本報訊 近日,吉林省工商局發布近期該省流通領域鋼材質量抽查檢驗結果,共抽檢19批次樣品,11批次不合格。  吉林省工商局近期委託遼源市工商局對標稱遼寧省瀋陽市、河北省霸州市等地19家企業生產的鋼材進行了抽查檢驗。  本次抽檢依據GB1499.2-2007《鋼筋混凝土用鋼第2部分:熱軋帶肋鋼筋》和GB/T700-2006《碳素結構鋼》國家或行業標準,重點檢測樣品的標誌、尺寸、屈服強度、抗拉強度、重量偏差等指標,共抽檢19批次樣品,11批次被判定不合格,不合格率為57.89%。
  • 雜質元素對非合金鋼性能的影響有哪些
    在固態下,硫在鐵中的溶解度很小,主要以FeS形態存在於鋼中,由於FeS的塑性差,使含硫較多的鋼脆性較大。還有,FeS與Fe可形成低熔點(985℃)的共晶體(FeS+Fe),分布在奧氏體的境界上。將鋼加熱到1000~1200℃進行熱壓力加工時,低熔點的共晶體已經溶化,晶粒間結合被破壞,導致鋼材在加工過程中沿晶界開裂,這種現象就是常說的鋼的熱脆。
  • 金屬熱處理基礎入門必須了解的二十個知識點
    4、熱處理的工藝過程是什麼(1)加熱:臨界點+△T值(2)保溫(3)冷卻:臨界點- △T值 一定冷卻速度5、主要參數有哪些(1)加熱溫度T10、退火工藝的種類有哪些主要有均勻化退火,完全退火,不完全退火,等溫退火,球化退火,再結晶退火, 去應力退火11、什麼是均勻化退火均勻化退火是為了減少金屬鑄錠、鑄件或鍛坯的化學成分的偏析和組織的不均勻性,將其加熱到高溫,長時間保持,然後進行緩慢冷卻
  • 金屬材料的檢驗方法有哪些?
    金屬材料的檢驗方法有哪些?金屬材料屬於冶金產品,從事金屬材料生產、訂貨、運輸、使用、保管和檢驗必須依據統一的技術標準 —— 冶金產品標準。對從事金屬材料的工作人員必須掌握標準的有關內容。一、包裝檢驗 根據金屬材料的種類、形狀、尺寸、精度、防腐而定。 1、散裝:即無包裝、揩錠、塊(不怕腐蝕、不貴重)、大型鋼材(大型鋼、厚鋼板、鋼軌)、生鐵等。 2、成捆:指尺寸較小、腐蝕對使用影響不大,如中小型鋼、管鋼、線材、薄板等。
  • 校園暴力的現狀、成因及預防對策
    但是,近年來校園暴力事件頻發,大有愈演愈烈之勢。在網絡上搜索「校園暴力」的關鍵字,就會出現大量的相關新聞,其中不乏觸目驚心的視頻。雖然國家各級機關都在加大防控校園暴力的力度,但是校園暴力事件仍然屢有發生,不斷見諸各類媒體,刷新人們對校園安全的認知,讓人們驚呼現在的孩子都怎麼了。是什麼讓這些正處於花季的少年如此冷漠殘暴?是什麼讓校園暴力事件屢禁不止?這些也是一直困擾我的疑問。