硬核科普:一文看懂人臉識別技術流程

2021-01-11 IT之家

小編是個天生懶惰的人,同時又是個急性子,這樣的人最享受被科技服務的樂趣。

舉個例子,十多年前大家還在普遍用現金的時代,小編在商店買東西排隊結帳,每當看到收銀員找零時手忙腳亂的樣子就會心急如焚,只恨不能拿了東西直接走人。那時候年幼的小編就攥緊拳頭夢想著以後一定要發明一種不用找零錢的方法。

後來這個在心底萌芽多年的夢想被別人實現了,失望之餘小編也樂享其成。用手機掃掃碼就能付錢可比現金方便快捷多了。可天知道小編「懶癌+急癌」晚期,久而久之竟覺得抬手掃碼、輸入密碼這樣的動作也很麻煩。所以後來出現的指紋支付算是拯救了小編。

再後來,連手指都不用動了,因為出現了「刷臉支付」,配合手上iPhone的卓越體驗,不得不說小編愛死了這個功能。

嗯,刷臉支付將小編從付錢時漫長等待的焦躁和不安中解救了出來,所以在IT之家編輯部的科技氛圍裡淫浸多年後,小編覺得有必要為大家講一講「刷臉」到底是個什麼東西,也可算是知恩圖報了!

「刷臉」,顧名思義,背後是一項關鍵技術:人臉識別。

別看這兩年因為在智慧型手機上的使用而大熱,其實人臉識別技術最早的研究還要追溯到20世紀50年代,當時已經有科學家在研究人臉輪廓的提取方法,但受限於技術水平,這項技術的相關研究一度停滯,直到20世紀80年代,人臉識別的方法才有了新的突破,神經生理學、腦神經學、視覺等相關知識被引入,人臉識別進入了新的發展階段。

所以,當前階段的人臉識別不是單一的技術,而是融合了神經生理學、腦神經學、計算機視覺等多方面學科的技術。不過,本質上它還是一項計算機視覺技術。

當然,IT之家做這篇文章的重點不在於回顧人臉識別的歷史,而是和大家講講人臉識別背後的一些基本原理。

人臉識別技術系統的基本邏輯架構

我們每天用人臉識別技術解鎖手機、結帳付款,是那麼的自然,但相信很少有同學深入思考這項技術背後是怎樣一個流程。

前面我們說,計算機視覺是人臉識別關係最緊密的技術。所以我們從這一點入手。

計算機視覺,通俗來說就是利用攝像頭等設備代替人眼,來獲取圖像,利用計算機對圖像信息進行處理,綜合人類的認知模式來建立人類視覺的計算理論。

這其中,最難的無疑是如何處理圖像信息、如何模擬人類的認知模式。

為了解決這些問題,計算機視覺還引入了圖像處理、模式識別、圖像理解、圖像生成等學科的知識。

圖像處理就是把原始圖像轉換成計算機更容易識別的圖像;模式識別,就是計算機判斷自己要識別的是什麼和怎麼識別的過程;圖像理解,就是對圖像中描述的景物進行分析;圖像生成,舉例來說就是當圖像的部分信息缺失時,能夠將缺失的信息補上……

這些都是計算機視覺需要藉助的學科技術。這裡面我們要著重講的是模式識別,它是一個獨立的理論體系,具體到計算機視覺領域的應用,它表示將計算機表示出來的圖像和一致的類別進行匹配的過程。

有點懂是吧。IT之家為大家通俗解釋一下,所謂「識別」,就是先認識,然後辨別。認識什麼?認識的是圖像和從圖像中總結的目標物體的特徵。怎麼辨別?就是將總結出來的特徵和自己已經掌握的特徵庫進行比對,然後才能實現辨別。

我們人類識別一樣物體也是遵循這個邏輯,先總結特徵,然後比對。至於前面的「模式」,就有點抽象了,你可以理解為一種規律,它影響著特徵和類型比對的結果。

沒錯,人臉識別本質上也是這個過程。

所以,我們沿著模式識別的思路,來看看它的整體過程:分別為預處理、特徵提取和分類等。我們畫出如下流程圖:

預處理是第一步,但是這部分工作可能很多很雜,例如減少圖像中的噪聲幹擾、提高清晰度、還有包括圖像濾波、變換、轉碼、模數轉化等。

特徵提取,就是在預處理後的圖像中,提取對識別有明顯作用的特徵,並在這個過程中降低模式特徵的維數,令其便於處理。這是一個複雜的過程,後面我們講到具體方法時候會有體現;

分類,就是對提取到的特徵值按照一定的準則進行分類,便於決策。

舉個例子,計算機要識別出這張照片中的男人,當它拿到照片時,可能覺得畫面太暗,先提個亮度,然後又發現噪點太多,再做個降噪……一頓操作後感覺可以了,再將照片轉化為數字信息,這個過程是預處理。

提取出來的特徵值會進入單獨的特徵空間,因為這樣可以更好地識別和做分類。接下來,就要對特徵空間裡的數據進行分類了,讓它們眼睛歸眼睛,鼻子歸鼻子,頭髮歸頭髮……基於這些分類好的數據,計算機才可以進行識別判斷和決策。

當然,為了方便大家理解這個邏輯過程,IT之家在這裡只是舉例粗略地說明,可能不準確,實際的步驟也是相當複雜的,還要考慮各種幹擾的因素,例如圖像的質量不清晰、背景複雜、圖像光照分布不均勻、目標姿勢角度出現扭曲或者佩戴了頭飾、眼鏡以及張了鬍鬚、化了妝等等各種情況。

還有要說明的一點是,這個模式識別的系統是需要一個自我訓練、學習的過程的,其中最重要的是對前面分類錯誤率的訓練(分類器訓練),因為在前面的分類中,我們無法保證分類的結果是100%正確的,但必須控制在一定的錯誤率之類,這必須通過大量的訓練樣本來不斷修正,令錯誤率符合要求。

好了,基於以上對計算機視覺模式識別的討論,我們就可以給出人臉識別系統的主要功能模塊了:

可能有小夥伴覺得上面這個舉出功能模塊太簡單了,所以我們再精確一些,給出下面的邏輯架構圖,相信不難理解:

人臉識別的主流方法

在上面一部分,我們主要介紹了人臉識別的基本邏輯流程,其實人臉識別的基本思想是比較類似的,都是要將圖像中的特徵提取出來,轉換到一個合適的子空間裡,然後在這個子空間裡衡量類似性或分類學習。但問題在於,對客觀世界採用怎樣協調統一且有成效的表示法?我們要找到怎樣合適的子空間,怎樣去分類,才能區分不同類,聚集相似的類別?為解決這些問題,衍生出了很多種方法和解決方案。

所以說,我們所說的人臉識別技術是籠統的,事實上,這是一個很多技術和方法的集合。

我們不妨依據上面的邏輯結構圖來逐步說明。

1、預處理

人臉圖像的預處理,這一步沒有太多可說的,主要包括消除噪聲、灰度歸一化、幾何校正等,這些操作一般有現成的算法可以實現,屬於比較基本的操作。不過要說明的是,這裡主要說的是靜態人臉圖像的預處理,如果是動態人臉圖像的預處理,就比較複雜了,一般是要先將動態人臉圖像分割成一組靜態人臉圖像,然後對人臉進行邊緣檢測和定位,在做一系列的處理,這裡就不展開了。

2、特徵提取

圖像特徵的提取是比較關鍵的一步(上文所說的模式空間向特徵空間的跨越),但對於圖像處理來說也是比較初級的一步。目前關於圖像特徵提取的方法有很多,但其實我們想一想,通常而言圖像的特徵還是可以歸類的,例如顏色特徵、紋理特徵、空間關係特徵、形狀特徵等,每一種特徵都有匹配的方法,其中有一些比較經典、好用的方法,例如HOG特徵法,LBP特徵法,Haar特徵法等,小編當然不可能一一講解,所以這裡選取其中一種——HOG特徵法。

HOG特徵也叫方向梯度直方圖,它是由Navneet Dalal和Bill Triggs在2005年的一篇博士論文中提出的。我們簡單來看它是怎麼進行的。

我們以這張照片為例,第一步是要將它變成黑白的照片,因為色彩信息在這裡對識別並沒有幫助。

在這張黑白照片中,我們從單個像素看起,觀察它周圍的像素,看它是往哪個方向逐漸變暗的,然後用箭頭表示這個像素變暗的方向。

如果對每個像素執行這樣的操作,這樣所有像素都會被這樣的箭頭取代,它們表示了像素明暗變化的方向。每一個這樣的箭頭表示明暗梯度。

事實上,對於每一個像素,給定坐標系,我們能夠求出它的梯度方向值。計算的方法比較複雜,我們不需要了解,只需要知道這一步是為了捕獲目標的輪廓信息,同時進一步弱化光照的幹擾。

如果是以這樣的方式做提取的話,計算量會很大。所以我們會把圖像分割成8x8像素的小方塊,叫做一個Cell,然後對每個Cell計算梯度信息,包括梯度的大小和方向。得到的是這個Cell的9維特徵向量。

相信到這裡大家有些不懂了。IT之家再為小夥伴們稍微解釋一下,其實這一步的目的是為每個Cell構建梯度方向直方圖,直方圖就是我們大家熟知的條形統計圖,這個直方圖中,X軸是將方向劃分的區間,Navneet Dalal等人研究表示劃分9個區間效果是最好的,如果是180°的方向,每個區間就代表20°。y軸表示某個方向區間內的梯度大小。這樣就等於是每個Cell的特徵描述符。

▲大致就是這個意思(圖片來源:加州大學舊金山分校圖像處理論文)

這裡還有一步,就是如果你的圖像受到光照的影響比較大,那麼還可以將一定的Cell組成一個block,例如2x2個Cell,這樣每個block上就是36維的特徵向量,然後對這36維特徵向量做規範化(具體怎樣規範,涉及到高等數學的知識,大家也不需要知道)。

如果我們輸入的圖像大小是256x512像素,那麼就有32x64=2048個Cell,有31x63=1953個block,每個block有36維向量,那麼這個圖像就有1953x36=70308維向量。這70308維向量就是這個圖像的HOG特徵向量了。

當然,上面這些步驟你也可都不了解,你只需要知道,最後原始的圖像被表示成了HOG的形式,如下圖:

然後根據這個HOG形式,在我們的庫中找到與已知的一些HOG樣式中,看起來最相似的部分。

3、圖像識別

人臉識別技術經過科學家多年的研究和發展,已經形成了多種研究方向和更多種的研究方法,如果我們梳理一下,主要包括基於幾何特徵的方法、基於模板的方法、基於模型的方法以及其他方法。

基於幾何特徵的方法是比較早期、傳統的方法了,它主要是研究人臉眼睛、鼻子等器官的形狀和結構關係的幾何描述,以此作為人臉識別的重要特徵。

基於模板的方法基本思想是拿已有的模板和圖像中同樣大小的區域去比對,包括基於相關匹配的方法、特徵臉方法、線性判別分析方法、神經網絡方法等。

基於模型的方法的方向是對人臉的顯著特徵進行特徵點定位,然後進行人臉的編碼,再利用相應的模型進行處理實現人臉識別,例如隱馬爾柯夫模型,主動形狀模型和主動外觀模型的方法等。

在人臉識別領域,有一些比較經典的算法,例如特徵臉法(Eigenface)、局部二值模式法、Fisherface等,不過IT之家在這裡還是還是覺得與時俱進比較好,所以選擇一個目前應用比較廣泛且流行的方法作為示例,叫做OpenFace。當然,我們不做實際的測試,只是通過它來了解識別的原理。

OpenFace屬於基於模型的方法,它是一個開源庫,包含了landmark,head pose,Actionunions,eye gaze等功能,以及訓練和檢測所有源碼的開源人臉框架。

在前面的步驟中,IT之家已經為大家介紹如何通過HOG的方法將圖像中人臉的特徵數據提取出來,也就是成功檢測到了人臉。

這時又有一個問題,就是這個人臉的姿勢好像不是那麼「正」,同樣一個人,如果她的姿勢,面部的朝向不同,人類仍然能認出她來,而計算機可能就認不出了。

解決這個問題,有一個辦法,就是檢測人臉主要特徵的特徵點,然後根據這些特徵點對人臉做對齊校準。這是Vahid Kazemi和Josephine Sullivan在2014年發明的方法,他們給人臉的重要部分選取68個特徵點(Landmarks),這68個點的位置是固定的,所以只需要對系統進行一些訓練,就能在任何臉部找到這68個點。

圖片來源:OpenFace API閱讀文檔(點此前往)

有了這68個點,就可以對人臉進行校正了,主要是通過仿射變換將原來比較歪的臉擺正,儘量消除誤差。這裡的仿射變換主要還是進行一些旋轉、放大縮小或輕微的變形,而不是誇張的扭曲,那樣就不能看了。

▲過程大約是這樣,原來的臉被進行了一定程度的校正(圖片來源:OpenFace github說明頁面)

這樣我們把原始的人臉圖像以及HOG的特徵向量輸入,能夠得到一張姿勢正確的只含有人臉的圖像。

注意,到這一步我們還不能直接拿這張人臉圖像去進行比對,因為工作量太大,我們要做的是繼續提取特徵。

接著,我們將這個人臉圖像再輸入一個神經網絡系統,讓它為這個臉部生成128維的向量,也可以說是這個人臉的128個測量值,它們可以表示眼睛之間的距離,眼睛和眉毛的距離、耳朵的大小等等。這裡只是方便大家理解而舉例,實際上具體這128維的向量表示了哪些特徵,我們不得而知。

當然,這一步說起來簡單,其實難點在於如何訓練這樣的一個卷積神經網絡。具體的訓練方法不是我們需要了解的,但我們可以了解一下訓練的思路。訓練時我們可以輸入一個人臉圖像的向量表示、同一人臉不同姿態的向量表示和另一人臉的向量表示,反覆進行類似的操作,並不斷調整,調整的目標是讓同一類對應的向量表示儘可能接近,其實也就是同一個人的向量表示儘可能距離較近,同理,不同類別的向量表示距離儘可能遠。至於人工智慧神經網絡訓練的基本原理,大家可以查看IT之家之前發布的《AI不是科幻電影裡的洪水猛獸,而是被慢慢變革的生活方式》這篇文章。

其實訓練的思路也很好理解,因為一個人的人臉不管姿態怎麼變,在一段時間內有些東西是固定的,比如眼睛間的距離、耳朵的大小、鼻子的長度等。

在得到這128個測量值後,最後一步就簡單了,就是將這128個測量值和我們訓練、測試過的所有面部數據做比對,測量值最接近的,就是我們要識別的那個人了。

這樣就可以完成一次人臉的識別。

總結

人臉識別技術經過70多年的發展,到今天已經發展成為一門以計算機視覺數字信息處理為中心,糅合信息安全學、語言學、神經學、物理學、AI等多學科交合的綜合性技術學科,內涵已極為豐富,並且發展快速。而IT之家在本文試圖為大家講解的,只是人臉識別最基礎和通俗的原理以及相對單一的用例分析,顯然無法涵蓋人臉識別領域所有的內容,只是希望藉此對大家理解、認識如今我們已經習慣使用的人臉識別功能有所幫助。

國際調研機構Gen Market Insights發布的數據顯示,到2025年底全球人臉識別設備市場價值將達到71.7億美元,智慧型手機上對人臉識別技術的廣泛應用,只是為我們了解這項技術提供了一個契機,未來,隨著5G萬物互聯時代的到來,智能硬體市場將得到極大擴展,那才是人臉識別技術真正大展身手的天地。

嗯,不錯,期待這個時代早日到來,到時候小編這張盛世美顏終於能做點有意義的事情了,也算不負父母恩澤。

本文參考資料:

沈理、劉翼光,熊志勇,2015-11-16,《人臉識別原理及算法:動態人臉識別系統研究》

CSU985,CSDN,2018-10-06,《圖像特徵提取總結》

人工智障v,簡書,2018-07-30,《HOG特徵——行人識別》

laolaonuonuo,CSDN,2018-03-10,《人臉識別主要算法》

大數據v,CSDN,2018-08-23,《深度乾貨!一文讀懂人臉識別技術(建議收藏)》

leon1741,CSDN,2018-08-02,《深入淺出人臉識別原理》

zouxy09,CSDN,2015-04-25,《人臉識別之特徵臉方法(Eigenface)》

csdn研發技術,CSDN,2018-01-26,《看OpenFace如何做到精準人臉識別

相關焦點

  • 人臉識別技術解析
    更有甚者,將參與者的人臉換臉到了主持人上,然後順利的通過了轉頭、搖頭、微笑等的一系列的人臉識別活體驗證。這一實驗引起了人們對人臉識別技術的擔憂,人臉識別到底靠譜麼?憑照片就可以製作出可欺騙人臉識別技術的模型,以後還能不能愉快地在社交平臺上曬自拍了?接下來就讓我們來聊一聊人臉識別技術。
  • 人臉識別中的人臉表情識別技術
    隨著人臉識別技術的發展,如今在識別中應用到對人臉的表情進行識別,可以應用在人機互動、安全、機器人製造、醫療、通信和汽車領域等。那麼,暢視智能來告訴人臉識別技術的人臉表情識別要如何進行?圖像獲取:通過人臉識別攝像頭等圖像捕捉工具獲取靜態人臉圖像或動態圖像序列。
  • 詳解蘇寧門店的人臉識別技術
    圖1 人臉識別系統核心流程從應用場景看,人臉識別應用主要分為1:1和1:N。1:1就是判斷兩張照片是否為同一個人,主要用於鑑權。 人臉識別最為關鍵的技術點就是人臉的特徵提取,直到2014年deepface首次將深度學習的引入,這項技術才得到了質的突破,使得人臉識別技術真正走到了商業可用階段。目前的研究主要集中在網絡結構的改進和損失函數的改進上。隨著研究的深入,目前人臉識別技術上的壁壘正在被打破,而人臉資料庫的資源是業內巨頭保持領先的另一個重要武器。
  • 人臉識別技術實現方法全解析
    人臉識別,一種基於人的臉部特徵信息進行身份認證的生物特徵識別技術。近年來,隨著歐美發達國家人臉識別技術開始進入實用階段後,人臉識別迅速成為近年來全球的一個市場熱點。雖然人臉識別技術經常聽,但你知道它是如何實現的嗎?
  • 掌紋識別與人臉識別有啥關聯
    根據報導,這項技術的故障率在0.0001%左右,亞馬遜正在努力將這一故障率提高至0.000001%。 另外,現在流行的指紋識別、人臉識別等生物識別技術,都出現過安全性問題。例如指紋識別可以被指紋膜成功欺騙,未輔以強大活體檢測功能的人臉識別系統也可以被3D列印面具欺騙的情況。 因此,生物識別技術在應用時都需要配合活體檢測或者疊加使用。
  • 人臉識別技術升級 戴著口罩也能刷臉打卡
    在人工智慧技術迅猛發展的當下,人臉識別已經不是一件新鮮事。但新冠肺炎疫情下,在建築工地、學校機關等需要鑑別入場人員身份信息的場所,人員在佩戴口罩、安全帽後,實現人臉快速識別並同步檢測體溫,成為一項全新的技術成果。戴口罩進行人臉識別的技術難點在哪裡?現有成果如何提供「一手抓防疫、一手抓生產」的解決方案?未來該技術還有怎樣的應用空間?
  • 全新iphoneX面容ID人臉識別技術是什麼?
    蘋果今年的重頭戲十周年紀念版iPhoneX手機搭載Face ID (又稱面容ID技術)面部識別技術,可以用人臉直接解鎖屏幕。這無疑是蘋果的一項重大技術革新,那iPhoneX啟用的Face ID人臉識別技術到底厲害在哪?
  • 危險的人臉識別
    資料顯示,曠視科技為OPPO、vivo、聯想等知名企業提供人臉識別相關服務。曠視科技謀求上市的背景,是人臉識別技術從公共領域向消費領域的快速延伸。過去,由於技術創新不足、應用推廣有限、成本高,人臉識別被制約在公共用途,一直沒有進入更廣泛的商業化應用中。
  • 對於人臉識別技術,西方國家為什麼如此糾結?
    人臉識別技術難以有效遏制然而,對這一技術的遏制卻陷入了僵局。在美國和歐洲,監管人臉識別進展緩慢,主要原因有兩個。一方面,出於對安全的考慮,政府並不情願遏制這項技術。因此,這一漏洞使得人臉識別技術在各地湧現,比如柏林的主要火車站——政府當局在那裡的一個實驗項目已經掃描了數以萬計的路人。
  • 小區人臉識別應用實測:有App明文上傳人臉照片及房產證
    從中國「人臉識別第一案」一審宣判到售樓處暗中使用人臉識別,從北京推出人臉識別垃圾桶到東莞公廁停用人臉識別供紙機,過去一年中,人臉識別應用正在經歷越來越嚴格的公眾審視。12月22日,由南都個人信息保護研究中心主辦的「2020啄木鳥數據治理論壇」在北京舉行。
  • 一德壹教人臉識別閘機系統——校園場景應用
    隨著人臉技術的成熟,人臉識別算法也越來越深入人們的生活,在建設智慧校園的過程中,校園安全也是重中之重。保護好每一個孩子,使發生在他們身上的意外事故減少到最低限度,是我們大家的責任。由於各地學校的開放度高、人員雜、流動大、因而增加了校園安防工作的難度。
  • 人臉識別怎麼就進了小區?
    人臉識別技術在使用和信息採集過程中,天然地容易引發個人信息保護方面的擔憂。這也使得這一技術進入社區時,不可避免地引發爭議和拉鋸。但可以明確的是,「人臉識別」作為這些概念中的重要組成部分,正在廣泛、快速地進入中國城市的社區。人臉識別技術在使用和信息採集過程中,天然地容易引發個人信息保護方面的擔憂。這也使得這一技術進入社區時,不可避免地引發爭議和拉鋸。另一方面,通過觀察人臉識別進入小區的故事,也可以藉機考察社區——這一中國城市的毛細血管——的治理和決策結構。
  • 浙大網新:公司目前將人臉識別技術應用於人臉識別自助實名制核驗閘...
    同花順金融研究中心7月10日訊,有投資者向浙大網新提問, 據網上公開數據顯示,2017年全球人臉識別產品市佔率如下:「雲從科技在2017年的市場份額是12.88%,是人臉識別設備行業的領頭羊。,兩年後的今天網新人臉識別產品市佔率如何?能否詳述下2019年網新相關產品銷售情況。公司回答表示,感謝您對公司的關注和建議。公司主要是將人工智慧等先進技術與自身行業結合,推進技術與產業的結合落地,公司目前將人臉識別技術應用於人臉識別自助實名制核驗閘機、飛思電子社保卡人臉識別取證系統等產品。
  • 「94歲老人被抱起做人臉識別」「為躲人臉識別戴頭盔看房」?
    傳言一:人臉識別系統任何機構都能裝真相:需符合相關規定,不是想裝就能裝如今,人臉識別技術被應用到越來越多的場景中,購物、打卡、解鎖、出行,甚至在一些地方連取廁紙都離不開它。閆懷志認為,正是由於這一技術特性,很多機構就以視頻監控為名,先通過設置攝像頭來獲取人臉信息,然後通過後臺運行的系統,在未經當事人許可的情況下,進行人臉識別,甚至通過人臉識別出來的身份信息進一步在網絡空間中實現個人數字畫像,這樣就可能對個人信息和隱私構成侵害。
  • 如何對人臉識別進行法律規制
    就政府部門使用人臉識別的法律規制,特別許可使用制度既發揮人臉識別技術之利,又防範人臉識別技術之弊,是一種更加理性的制度安排。就非政府部門使用人臉識別的法律規制,對人臉信息作出比一般個人信息更為嚴格的特別保護和特別規制,更有利於保護個人的人臉信息。
  • 關於faceID——近紅外人臉識別技術的分析介紹
    打開APP 關於faceID——近紅外人臉識別技術的分析介紹 發表於 2019-08-23 11:07:37 人臉識別是生物特徵識別領域中最常用的一種模態
  • 人臉識別到底是如何進入小區的?
    但可以明確的是,「人臉識別」作為這些概念中的重要組成部分,正在廣泛、快速地進入中國城市的社區。人臉識別技術在使用和信息採集過程中,天然地容易引發個人信息保護方面的擔憂。這也使得這一技術進入社區時,不可避免地引發爭議和拉鋸。另一方面,通過觀察人臉識別進入小區的故事,也可以藉機考察社區——這一中國城市的毛細血管——的治理和決策結構。
  • iPhone Face ID與其他人臉識別技術有什麼不一樣?
    例如支付寶的人臉識別登錄與iPhoneX的Face ID技術一樣嗎?iPhoneX和其他手機的人臉識別有什麼不同?今天微模式為你一一揭曉。目前市面上的人臉識別手機原理上與蘋果的iPhone X刷臉解鎖一樣,主要差異在於人臉的精確度上,2D和3D稍有差別,在這一方面,Android手機今年也會陸續實現iPhoneX的3D解鎖了。
  • 2小時帶你學會人臉識別技術|清華大學博士後親授
    這得益於背後日益成熟的人臉識別技術,下面讓我們來掰一掰居功至偉的人臉識別技術。1、人臉檢測檢測出人臉後,可對人臉進行分析,獲得眼、口、鼻輪廓等72個關鍵點定位準確識別多種人臉屬性,如性別,年齡,表情等信息。
  • 美國紐約州籤署法案:禁止人臉識別技術進校園
    紐約州禁止人臉識別技術進校園據當地媒體報導,近日,紐約州州長安德魯·庫莫籤署了一項法案,禁止在學校使用面部識別技術和其他生物識別技術。庫莫表示,面部識別技術能夠使紐約人獲益良多,但它的使用會帶來嚴重和法律層面的隱私擔憂,因此不得不進行檢驗,尤其是在校園裡。