38個常用Python庫:數值計算、可視化、機器學習等8大領域都有了

2021-01-07 CDA數據分析師

作者 | 李明江 張良均 周東平 張尚佳 來源 | 大數據DT

Python作為一個設計優秀的程序語言,現在已廣泛應用於各種領域,依靠其強大的第三方類庫,Python在各個領域都能發揮巨大的作用。

一、數值計算

數值計算是數據挖掘、機器學習的基礎。Python提供多種強大的擴展庫用於數值計算,常用的數值計算庫如下所示。

1. NumPy

支持多維數組與矩陣運算,也針對數組運算提供大量的數學函數庫。通常與SciPy和Matplotlib一起使用,支持比Python更多種類的數值類型,其中定義的最重要的對象是稱為ndarray的n維數組類型,用於描述相同類型的元素集合,可以使用基於0的索引訪問集合中元素。

2. SciPy

在NumPy庫的基礎上增加了眾多的數學、科學及工程計算中常用的庫函數,如線性代數、常微分方程數值求解、信號處理、圖像處理、稀疏矩陣等,可進行插值處理、信號濾波,以及使用C語言加速計算。

3. Pandas

基於NumPy的一種工具,為解決數據分析任務而生。納入大量庫和一些標準的數據模型,提供高效地操作大型數據集所需的工具及大量的能快速便捷處理數據的函數和方法,為時間序列分析提供很好的支持,提供多種數據結構,如Series、Time-Series、DataFrame和Panel。

二、數據可視化

數據可視化是展示數據、理解數據的有效手段,常用的Python數據可視化庫如下所示。

4. Matplotlib

第一個Python可視化庫,有許多別的程序庫都是建立在其基礎上或者直接調用該庫,可以很方便地得到數據的大致信息,功能非常強大,但也非常複雜。

5. Seaborn

利用了Matplotlib,用簡潔的代碼來製作好看的圖表。與Matplotlib最大的區別為默認繪圖風格和色彩搭配都具有現代美感。

6. ggplot

基於R的一個作圖庫ggplot2,同時利用了源於《圖像語法》(The Grammar of Graphics)中的概念,允許疊加不同的圖層來完成一幅圖,並不適用於製作非常個性化的圖像,為操作的簡潔度而犧牲了圖像的複雜度。

7. Bokeh

跟ggplot一樣,Bokeh也基於《圖形語法》的概念。與ggplot不同之處為它完全基於Python而不是從R處引用。長處在於能用於製作可交互、可直接用於網絡的圖表。圖表可以輸出為JSON對象、HTML文檔或者可交互的網絡應用。

Bokeh也支持數據流和實時數據,為不同的用戶提供了3種控制水平:

最高的控制水平用於快速製圖,主要用於製作常用圖像;中等控制水平與Matplotlib一樣允許開發人員控制圖像的基本元素(例如分布圖中的點);最低的控制水平主要面向開發人員和軟體工程師。沒有默認值,需要定義圖表的每一個元素。8. Plotly

可以通過Python notebook使用,與Bokeh一樣致力於交互圖表的製作,但提供在別的庫中幾乎沒有的幾種圖表類型,如等值線圖、樹形圖和三維圖表。

9. pygal

與Bokeh和Plotly一樣,提供可直接嵌入網絡瀏覽器的可交互圖像。與其他兩者的主要區別在於可將圖表輸出為SVG格式,所有的圖表都被封裝成方法,且默認的風格也很漂亮,用幾行代碼就可以很容易地製作出漂亮的圖表。

10. geoplotlib

用於製作地圖和地理相關數據的工具箱。可用來製作多種地圖,比如等值區域圖、熱度圖、點密度圖。必須安裝Pyglet(一個面向對象編程接口)方可使用。

11. missingno

用圖像的方式快速評估數據缺失的情況,可根據數據的完整度對數據進行排序或過濾,或者根據熱度圖或樹狀圖對數據進行修正。

三、Web開發

Web應用開發可以說是目前軟體開發中最重要的部分。Python提供各種Web開發框架,幫助使用者快速實現功能開發。常用的Python網絡開發類庫如下所示。

12. Django

一個高級的Python Web框架,支持快速開發,提供從模板引擎到ORM所需的一切東西,使用該庫構建App時,必須遵循Django的方式。

13. Socket

一個套接字通訊底層庫,用於在伺服器和客戶端間建立TCP或UDP連接,通過連接發送請求與響應。

14. Flask

一個基於Werkzeug、Jinja 2的Python輕量級框架(microframework),默認配備Jinja模板引擎,也包含其他模板引擎或ORM供選擇,適合用來編寫API服務(RESTful rervices)。

15. Twisted

一個使用Python實現的基於事件驅動的網絡引擎框架,建立在deferred object之上,一個通過異步架構實現的高性能的引擎,不適用於編寫常規的Web Apps,更適用於底層網絡。

16. Tornado

一個由FriendFeed開發的Python Web框架和異步網絡庫,採用非阻塞網絡I/O模型,可以處理數以千計的網絡連接。對於long polling、WebSockets和其他需要長時間實時連接的Apps,Tornado是一個理想的Web框架,它介於Django和Flask之間,能很好地處理C10K問題。

四、資料庫管理

資料庫是企業用於存放數據的主要工具,資料庫管理包括了數據定義、數據操作、資料庫運行管理、數據組織、資料庫庫保護、資料庫維護等。Python提供了所有主流關係資料庫管理接口,常用的Python MySQL連接庫及其簡介如下所示。

17. MySQL-python

又稱MySQLdb,是Python連接MySQL最流行的一個驅動,很多框架也基於此庫進行開發。只支持Python 2.x,且安裝時有許多前置條件。由於該庫基於C語言開發,在Windows平臺上的安裝非常不友好,經常出現失敗的情況,現在基本不推薦使用,取代品為衍生版本。

18. mysqlclient

完全兼容MySQLdb,同時支持Python 3.x,是Django ORM的依賴工具,可使用原生SQL來操作資料庫,安裝方式與MySQLdb一致。

19. PyMySQL

純Python實現的驅動,速度比MySQLdb慢,最大的特點為安裝方式簡潔,同時也兼容MySQL-python。

20. SQLAlchemy

一種既支持原生SQL,又支持ORM的工具。ORM是Python對象與資料庫關係表的一種映射關係,可有效提高寫代碼的速度,同時兼容多種資料庫系統,如SQLite、MySQL、PostgreSQL,代價為性能上的一些損失。

五、自動化運維

運維的主要內容包括保障業務長期穩定運行、保障數據安全可靠、自動化完成部署任務。Python能夠滿足絕大部分自動化運維的需求,目前在Linux運維中已用Python實現的應用如下所示。

21. jumpsever跳板機

一種由Python編寫的開源跳板機(堡壘機)系統,實現了跳板機的基本功能,包含認證、授權和審計,集成了Ansible、批量命令等。

支持WebTerminal Bootstrap編寫,界面美觀,自動收集硬體信息,支持錄像回放、命令搜索、實時監控、批量上傳下載等功能,基於SSH協議進行管理,客戶端無須安裝agent。主要用於解決可視化安全管理,因完全開源,容易再次開發。

22. Magedu分布式監控系統

一種用Python開發的自動化監控系統,可監控常用系統服務、應用、網絡設備,可在一臺主機上監控多個不同服務,不同服務的監控間隔可以不同,同一個服務在不同主機上的監控間隔、報警閾值可以不同,並提供數據可視化界面。

23. Magedu的CMDB

一種用Python開發的硬體管理系統,包含採集硬體數據、API、頁面管理3部分功能,主要用於自動化管理筆記本、路由器等常見設備的日常使用。由伺服器的客戶端採集硬體數據,將硬體信息發送至API,API負責將獲取的數據保存至資料庫中,後臺管理程序負責對伺服器信息進行配置和展示。

24. 任務調度系統

一種由Python開發的任務調度系統,主要用於自動化地將一個服務進程分布到其他多個機器的多個進程中,一個服務進程可作為調度者依靠網絡通信完成這一工作。

25. Python運維流程系統

一種使用Python語言編寫的調度和監控工作流的平臺,內部用於創建、監控和調整數據管道。允許工作流開發人員輕鬆創建、維護和周期性地調度運行工作流,包括了如數據存儲、增長分析、Email發送、A/B測試等諸多跨多部門的用例。

六、GUI編程

GUI(Graphical User Interface,圖形用戶界面)是指採用圖形方式顯示的計算機操作用戶界面。Python提供多個圖形開發界面的庫用於GUI編程,常用Python GUI庫如下所示。

26. Tkinter

一個Python的標準GUI庫,可以快速地創建GUI應用程式,可以在大多數的UNIX平臺下使用,同樣可以應用在Windows和Macintosh系統中,Tkinter 8.0的後續版本可以實現本地窗口風格,並良好地運行在絕大多數平臺中。

27. wxPython

一款開源軟體跨平臺GUI庫wxWidgets的Python封裝和Python模塊,是Python語言的一套優秀的GUI圖形庫,允許程式設計師很方便地創建完整的、功能健全的GUI用戶界面。

28. PyQt

一個創建GUI應用程式的工具庫,是Python程式語言和Qt的成功融合,可以運行在所有主要作業系統上,包括UNIX、Windows和Mac。PyQt採用雙許可證,開發人員可以選擇GPL和商業許可,從PyQt的版本4開始,GPL許可證可用於所有支持的平臺。

29. PySide

一個跨平臺的應用程式框架Qt的Python綁定版本,提供與PyQt類似的功能,並相容API,但與PyQt不同處為其使用LGPL授權。

七、機器學習

Python作為一門理想的集成語言,將各種技術綁定在一起,除了為用戶提供更方便的功能之外,還是一個理想的粘合平臺,在開發人員與外部庫的低層次集成人員之間搭建連接,以便用C/C++實現更高效的算法。

對於研究人員者而言,使用Python編程可以快速遷移代碼並進行改動,而無須花費過多的精力在修改代碼與代碼規範上。開發者在Python中封裝了很多優秀的依賴庫,其中NumPy和SciPy庫提供了目前解決機器學習問題所需的標準配置。

Python目前集成了大量的機器學習框架,其中常用機器學習庫如下所示。

30. Scikit-Learn

Scikit-Learn基於NumPy和SciPy,是專門為機器學習建造的一個Python模塊,提供了大量用於數據挖掘和分析的工具,包括數據預處理、交叉驗證、算法與可視化算法等一系列接口。

Sklearn的基本功能可分為6個部分:

分類回歸聚類數據降維模型選擇數據預處理其中集成了大量分類、回歸和聚類的算法,包括支持向量機、邏輯回歸、樸素貝葉斯、隨機森林、Gradient Boosting、K-means和DBSCAN等。

31. Orange3

Orange3是一個基於組件的數據挖掘和機器學習軟體套裝,支持Python進行腳本開發。它包含一系列的數據可視化、檢索、預處理和建模技術,具有一個良好的用戶界面,同時也可以作為Python的一個模塊使用。

用戶可通過數據可視化進行數據分析,包括統計分布圖、柱狀圖、散點圖,以及更深層次的決策樹、分層聚簇、熱點圖、MDS(多維度分析)、線性預測等,並可使用Orange自帶的各類附加功能組件進行NLP、文本挖掘、構建網絡分析、推斷高頻數據集和關聯規則數據分析。

32. XGBoost

XGBoost是專注於梯度提升算法的機器學習函數庫,因其優良的學習效果及高效的訓練速度而獲得廣泛的關注。XGBoost支持並行處理,比起同樣實現了梯度提升算法的Scikit-Learn庫,其性能提升10倍以上。XGBoost可以處理回歸、分類和排序等多種任務。

33. NuPIC

NuPIC是專注於時間序列的一個機器學習平臺,其核心算法為HTM算法,相比於深度學習,其更為接近人類大腦的運行結構。HTM算法的理論依據主要是人腦中處理高級認知功能的新皮質部分的運作原理。NuPIC可用於預測及異常檢測,適用面非常廣,僅要求輸入時間序列即可。

34. Milk

Milk(Machine Learning Toolkit)是Python中的一個機器學習工具包。

Milk注重提升運行速度與降低內存佔用,因此大部分對性能敏感的代碼都是使用C++編寫的,為了便利性在此基礎上提供Python接口。重點提供監督分類方法,如SVMs、KNN、隨機森林和決策樹,也支持無監督學習算法,如K-means和密切關係傳播。

八、深度學習

深度學習作為機器學習的分支,綻放了耀眼的光芒。由於Python的易用性與可擴展性,眾多深度學習框架提供了Python接口,其中較為流行的深度學習庫如下所示。

35. Caffe

Caffe(Convolutional Architecture for Fast Feature Embedding)是一個以表達式、速度和模塊化為核心的深度學習框架,具備清晰、可讀性高和快速的特性,在視頻、圖像處理方面應用較多。

Caffe中的網絡結構與優化都以配置文件形式定義,容易上手,無須通過代碼構建網絡;網絡訓練速度快,能夠訓練大型數據集與State-of-the-art的模型;模塊化的組件可以方便地拓展到新的模型與學習任務上。

36. Theano

Theano誕生於2008年,是一個高性能的符號計算及深度學習庫,被認為是深度學習庫的始祖之一,也被認為是深度學習研究和應用的重要標準之一。其核心是一個數學表達式的編譯器,專門為處理大規模神經網絡訓練的計算而設計。

Theano很好地整合了NumPy,可以直接使用NumPy的ndarray,使得API接口學習成本大為降低;其計算穩定性好,可以精準地計算輸出值很小的函數,如log(1+x);可動態地生成C或者CUDA代碼,用來編譯成高效的機器代碼。

37. TensorFlow

TensorFlow是相對高階的機器學習庫,其核心代碼使用C++編寫,並支持自動求導,使得用戶可以方便地設計神經網絡結構,不需要親自編寫C++或CUDA代碼,也無須通過反向傳播求解梯度。由於底層使用C++語言編寫,運行效率得到了保證,並簡化了線上部署的複雜度。

除了核心代碼的C++接口以外,TensorFlow還有官方的Python、Go和Java接口以外,用戶可以在一個硬體配置較好的機器中用Python進行實驗,並在資源比較緊張的嵌入式環境或需要低延遲的環境中用C++部署模型。

TensorFlow不只局限於神經網絡,其數據流式圖還支持非常自由的算法表達,也可以輕鬆實現深度學習以外的機器學習算法。

38. Keras

Keras是一個高度模塊化的神經網絡庫,使用Python實現,並可以同時運行在TensorFlow和Theano上。

Keras專精於深度學習,其提供了到目前為止最方便的API,用戶僅需將高級的模塊拼在一起便可設計神經網絡,大大降低了編程開銷(code overhead)與理解開銷(cognitive overhead)。

Keras同時支持卷積網絡和循環網絡,支持級聯的模型或任意的圖結構的模型,從CPU上計算切換到GPU加速無須任何代碼的改動。簡化了編程的複雜度的同時,在性能上絲毫不遜色於TensorFlow和Theano。

相關焦點

  • 2019 必知的 10 大頂級 python 庫
    然而,最重要的一點是它有大量的庫供用戶使用。python 的簡單性吸引了許多開發人員為機器學習創建新的庫。由於有大量的庫,python 在機器學習專家中變得非常流行。所以,這裡要介紹的第一個庫是 TensorFlow。1.TensorFlow
  • python數據挖掘常用工具有哪幾種?
    python有強大的第三方庫,廣泛用於數據分析,數據挖掘、機器學習等領域,下面小編整理了python數據挖掘的一些常用庫,希望對各位小夥伴學習python數據挖掘有所幫助。1. Numpy能夠提供數組支持,進行矢量運算,並且高效地處理函數,線性代數處理等。
  • Python 機器學習庫 Top 10,你值得擁有!
    Python 在眾多開發者中如此受追捧的原因之一便是其擁有大量的與機器學習相關的開源框架以及工具庫,本文介紹了其中最受歡迎的10大Python庫。原文:https://hackernoon.com/top-10-libraries-in-python-to-implement-machine-learning-12602cf5dc61隨著人工智慧技術的發展與普及,Python 超越了許多其他程式語言,成為了機器學習領域中最熱門最常用的程式語言之一。
  • python機器學習之使用scikit-learn庫
    引言數據分析由一連串的步驟組成,對於其中預測模型的創建和驗證這一步,我們使用scikit-learn這個功能強大的庫來完成。scikit-learning庫python庫scikit-learn整合了多種機器學習算法。
  • 算法應用|機器學習python應用,簡單機器學習項目實踐
    上一篇文章中介紹了機器學習的簡單知識,還有python中進行機器學習實踐需要的生態環境,接下來將會通過鳶尾花分類這個例子對機器學習做一個簡要的介紹。通過一步一步地實現這個項目來介紹以下內容。導入和使用python中機器學習的各個方面的類庫。
  • 20個超棒的Python 庫集合分享
    為了方便學習,本文列出的20個Python庫將按領域進行分類,有些你可能並不熟悉,但是真的能提高你的模型算法實現效率,多一點嘗試,多一些努力! 核心庫和統計數據 1.Plotly (Commits: 2906, Contributors: 48) 官網:https://plot.ly/python/ Plotly 是一個流行的庫,它可以讓你輕鬆構建複雜的圖形。該軟體包適用於交互式 Web 應用程,可實現輪廓圖、三元圖和三維圖等視覺效果。 8.
  • 那些讓人驚豔的Python庫
    每一門技藝都是入門容易熟悉難,越是了解,越是感覺到自己的欠缺,在python博大精深的世界裡,這些蔚為壯觀的python庫,也只能算是滄海一粟。python-nameparser–把一個人名分解為幾個獨立的部分。python-user-agents–瀏覽器user agent解析器。sqlparse–一個無驗證的SQL解析器。
  • 令人讚嘆的8個Python新手工具!
    其中scikit-learn是最有名的,是開源的,任何人都可以免費地使用這個庫或者進行二次開發。它是一個非常強大的工具,能為庫的開發提供高水平的支持和嚴格的管理。它也得到了很多第三方工具的支持,有豐富的功能適用於各種用例。scikit-learn主要有六大基本功能,分別是分類、回歸、聚類、數據將維、模型選擇和數據預處理。
  • Python和人工智慧有什麼關係?Python 和人工智慧的區別是什麼?
    人工智慧人工智慧是一個大的概念,在人工智慧下有計算機視覺,語音識別,自然語言處理等不同的技術領域,這些技術領域中在Github上又有許多開源的代碼可以直接用來開發,而這些代碼往往需要或者只支持人工智慧是一個大的範疇,包括很多方面的應用,比如機器學習,在機器學習中的回歸算法,它們是通過統計分析所有數據來建立多因式,然後求解式子,而在這個過程中程式語言起到的作用是清洗數據、處理數據、建立關係求解結果的作用,python適用於數據清洗且學習成本低,所以在一定程度上,好一部分人傾向於將python應用於人工智慧應用領域。
  • 手把手教您Python機器學習項目
    加載數據集並使用統計摘要和數據可視化理解它的結構。創建6個機器學習模型,選擇最好的,建立準確性可靠的信心。如果您是一個機器學習初學者,並希望最終開始使用Python,那麼本教程就是為您設計的。它只有4個屬性和150行,這意味著它很小,很容易裝入內存(以及一個屏幕或A4頁面)。所有的數值屬性都在相同的單位和相同的比例中,開始時不需要任何特殊的比例或轉換。讓我們從Python中的hello world機器學習項目開始吧。
  • Python300本電子書強力贈送,你敢來我就敢送!
    PS:雖然是有很多電子書,但是300本嘛,其實貌似沒有那麼多,但是大部分還是有的,你總會有你需要的如果覺得這個活動不錯,還麻煩各位小夥伴幫我轉發一下,小編也好賺一波人氣。0. 數據科學速查表1. 零起點Python機器學習快速入門2.
  • 良心整理15個超級Python庫,不要錯過!
    它在開發人員中流行的原因有很多,最重要的一點就是它有大量的庫供用戶使用。Python 的易用性、靈活性吸引了許多開發人員為機器學習創建新的庫。有一個庫大家必都會介紹,就是TensorFlow,這裡就不多說了。
  • 數據可視化最有價值的50個圖表 | 網際網路數據資訊網-199IT | 中文...
    在數據分析和可視化中最有用的 50 個 Matplotlib 圖表。 這些圖表列表允許您使用 python 的 matplotlib 和 seaborn 庫選擇要顯示的可視化對象。這些圖表根據可視化目標的7個不同情景進行分組。 例如,如果要想像兩個變量之間的關係,請查看「關聯」部分下的圖表。 或者,如果您想要顯示值如何隨時間變化,請查看「變化」部分,依此類推。
  • 機器學習團隊常用工具總結,人生苦短,我用Python!
    【新智元導讀】現在國外現初創公司最頻繁使用的機器學習工具是什麼?本篇文章詳細總結,帶你全方位了解,想快速坐上人工智慧順風車的小夥伴們,請抓穩了!   有想法有創意,想快速自行發起項目?還在海量的工具包、軟體、平臺、庫和各種插件上毫無頭緒地尋覓?想加入初創公司一展身手,卻找不到補課切入點?
  • 「python學習手冊-筆記」003.數值類型
    =2.0Out[13]: False看第三項可以知道,python是支持混合類型的數值比較的.如前面所說,python在進行混合類型的數值運算的時候,會先將其轉換為精度更高的類型,然後再進行計算.這是由於浮點數是有限的比特位數,導致無法精確的表示某些數值.這個問題不僅在python中存在,在其他語言中同樣存在. 不過python有分數和小數,可以很好的規避這些問題. 畢竟python適合科學計算的特性不是白來的.python中的除法python中有三種風格的除法和兩種除法運算符.
  • Python入門很簡單,只要掌握3456點
    創一個小群,供大家學習交流聊天 如果有對學python方面有什麼疑惑問題的,或者有什麼想說的想聊的大家可以一起交流學習一起進步呀。 也希望大家對學python能夠持之以恆 python愛好群, 要快速學會Python,謹記3456這四個數字就可以了。 Python基礎培訓要點 下面我來描述這四個數字的含義!
  • 一文包會,教你如何熟練運用Python數值計算Numpy包
    對於用Python的朋友來說,在平常的數值計算中肯定會用到一個開源包,沒錯,它就是大名鼎鼎的Numpy包,全稱為Numberical Python,是Python的一種開源的數值計算擴展,Numpy包內部集成了大量的數學函數庫,你都可以隨手拿來使用,極為方便!
  • 8個流行的Python可視化工具包,你喜歡哪個?
    本文將介紹一些常用的 Python 可視化包,包括這些包的優缺點以及分別適用於什麼樣的場景。這篇文章只擴展到 2D 圖,為下一次講 3D 圖和商業報表(dashboard)留了一些空間,不過這次要講的包中,許多都可以很好地支持 3D 圖和商業報表。
  • Python機器學習的迷你課程(14天教學)
    您可以從CSV文件加載您自己的數據,但當您開始使用Python機器學習時,您應該在標準機器學習數據集上進行練習。你們今天的任務是熟練地將數據加載到Python中,找到並加載標準的機器學習數據集。在UCI機器學習知識庫中有許多優秀的CSV格式的標準機器學習數據集,您可以下載並使用它們進行練習。
  • 小學沒跟上編程的步伐,長大了這樣彌補,網友:一切都是為了生活
    小時候沒有學習編程,大學專業也跟編程不相關,都沒有關係,想學啥時候行動都不晚;國家出臺相關政策,在計算機二級考試中加入python等程式語言的考試。 計算機二級考試有python嗎?