純數學|拓撲 龐加萊對偶 Poincaré duality

2020-12-26 每天一點純數學

在數學中,以亨利·龐加萊命名的龐加萊對偶定理,是關於流形的同調和上同調群的結構的一個基本結果。它表明,如果M是一個n維方向的閉廖(緊且無邊界),那麼對於所有的整數k, M的第k個上同調群同構於M的(n-k)個上同調群

In mathematics, the Poincaré dualitytheorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds.

It states that if M is an n-dimensional oriented closed manifold (compact and without boundary), then the kth cohomology group of M is isomorphic to the (n-k)th homology group of M, for all integers k

Hk≌Hn-k(M).

龐加萊對偶對任何係數環都成立,只要取了這個係數環的方向; 特別地,由於每個流形都有一個唯一的方向模2,龐加萊二元性在沒有任何方向假設的情況下保持模2。

Poincaré duality holds for any coefficient ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation.

歷史

History

龐加萊二象性的一種形式是由亨利·龐加萊在1893年首次提出的,沒有證據。它是用Betti數來表示的:a閉的第k個Betti數和(n-k)個Betti數。可定向n流形是等價的。上同調概念在當時距離被澄清大約40年。1895年發表的論文《西圖斯分析》(Analysis Situs)中,龐加萊試圖用他發明的拓撲交理論來證明這個定理。保羅·希加德對他的工作的批評使他意識到他的證明有嚴重的缺陷。在Situs分析的前兩個補充中,龐加萊給出了雙重三角形的新證明。

A form of Poincaré duality was first stated, without proof, by Henri Poincaré in 1893. It was stated in terms of Betti numbers: The kth and (n-k)th Betti numbers of a closed (i.e., compact and without boundary) orientable n-manifold are equal.

The cohomology concept was at that time about 40 years from being clarified. In his 1895 paper Analysis Situs, Poincaré tried to prove the theorem using topological intersection theory, which he had invented. Criticism of his work by Poul Heegaardled him to realize that his proof was seriously flawed.

In the first two complements to Analysis Situs, Poincaré gave a new proof in terms of dual triangulations.

龐加萊二元性直到20世紀30年代上同調出現後才有了現代的形式,當愛德華·哈斯勒ech和惠特尼發明了杯子和帽產品和制定龐加萊在這些新術語二元性。

Poincaré duality did not take on its modern form until the advent of cohomology in the 1930s, when Eduard ech and Hassler Whitney invented the cup and cap products and formulated Poincaré duality in these new terms.

現代公式

Modern formulation

龐加萊對偶定理的現代表述在同調和上同調方面:如果M是一個封閉的有向n流形,k是一個小於n的自然數,然後有一個規範定義的同構Hk(M,Z)→Hn-k(M,Z)。為了定義這樣的同構,選擇M的一個固定的基類[M],如果M是有方向的,這個基類就會存在。然後通過將一個元素α∈Hk(M)映射到它的cap乘積[M]︵α來定義同構。

The modern statement of the Poincaré duality theorem is in terms of homology and cohomology: if M is a closed oriented n-manifold, and k is a natural number smaller than n, then there is a canonically defined isomorphism Hk(M,Z)→Hn-k(M,Z).

To define such an isomorphism, one chooses a fixed fundamental class [M] of M, which will exist if M is oriented. Then the isomorphism is defined by mapping an element α∈Hk(M) to its cap product [M]︵α.

對於負度,上同島和上同島定義為零,特別地,龐加萊對偶性意味著可定向閉n流形的同調和上同調群在大於n度時為零。

Homology and cohomology groups are defined to be zero for negative degrees, so Poincaré duality in particular implies that the homology and cohomology groups of orientable closed n-manifolds are zero for degrees bigger than n.

在這裡,同調和上同調是整的,但是同構在任何係數環上都是有效的。在有向流形不緊的情況下,必須用緊支上的上同調來代替上同調。

Here, homology and cohomology are integral, but the isomorphism remains valid over any coefficient ring. In the case where an oriented manifold is not compact, one has to replace cohomology by cohomology with compact support.

雙細胞結構

Dual cell structures

對於三角流形,存在相應的對偶多面體分解。二元多面體分解是流形的細胞分解,使得二元多面體分解的k細胞與三角剖分的(n-k)細胞是雙射對應的,推廣對偶多面體的概念。

Given a triangulated manifold, there is a corresponding dual polyhedral decomposition.

The dual polyhedral decomposition is a cell decomposition of the manifold such that the k-cells of the dual polyhedral decomposition are in bijective correspondence with the (n-k)-cells of the triangulation, generalizing the notion of dual polyhedra.

精確地說,設T為n-流形M的三角剖分。設S是T的一個單純形。設為包含S的T的上維單純形,所以我們可以認為S是頂點的一個子集。定義與S對應的雙單元DS,使∩DS為內的凸殼,為包含S的所有頂點子集的重心。我們可以檢驗一下,如果S是i維的,那麼DS就是一個(n-i)維的單元格。此外,與T的雙胞形成M的CW分解,因此,配對CiMCn-iM→通過交集引發一個同構CiM→Cn-iM, 其中Ci是三角剖分T的細胞同源性,而Cn-iM和Cn-iM分別是流形的二重多面體/CW分解的細胞同源性和共同源性。這是鏈配合物的同構,這一事實證明了龐加萊對偶性。粗略地說,這相當於三角剖分T的邊界關係是對應S→DS下對偶多面體分解的關聯關係。

Precisely, let T be a triangulation of an n-manifold M . Let S be a simplex of T . Let be a top-dimensional simplex of T containing S, so we can think of S as a subset of the vertices of .

Define the dual cell DS corresponding to S so that ∩DS is the convex hull in of the barycentres of all subsets of the vertices of that contain S. One can check that if S is i -dimensional, then DS is an (n-i)-dimensional cell.

Moreover, the dual cells to T form a CW-decomposition of M , and the only (n-i)-dimensional dual cell that intersects an i-cell S is DS.

Thus the pairing CiMCn-iM→ given by taking intersections induces an isomorphism CiM→Cn-iM, where Ci is the cellular homology of the triangulation T , and Cn-iM and Cn-iM are the cellular homologies and cohomologies of the dual polyhedral/CW decomposition the manifold respectively.

The fact that this is an isomorphism of chain complexes is a proof of Poincaré Duality. Roughly speaking, this amounts to the fact that the boundary relation for the triangulation T is the incidence relation for the dual polyhedral decomposition under the correspondence S→DS.

自然性 Naturality

注意到Hk是一個逆變函子,而Hn-k是協變的。同構族同構族

Note that Hk is a contravariant functor while Hn-k is covariant. The family of isomorphisms

DM: Hk(M)→Hn-k(M)

在以下意義上是自然的:如果

is natural in the following sense: if

f :M→N

為兩個有向n流形之間的連續映射,與有向兼容,即把M的基類映射到N的基類,那麼

is a continuous map between two oriented n-manifolds which is compatible with orientation, i.e. which maps the fundamental class of M to the fundamental class of N, then

DN = f○DM○f,

其中f和f分別是f在同調和上同調中誘導的映射。

where f and f are the maps induced by f in homology and cohomology, respectively.

注意到一個非常重要的假設f把M的基類映射到N的基類。自然性並不適用於任意連續映射f,因為一般f 不是注射上同調。例如,如果f是一個覆蓋映射那麼它將M的基類映射到N的基類的倍數。這個倍數是映射f的次數。

Note the very strong and crucial hypothesis that f maps the fundamental class of M to the fundamental class of N. Naturality does not hold for an arbitrary continuous map f, since in general f is not an injection on cohomology.

For example, if f is a covering map then it maps the fundamental class of M to a multiple of the fundamental class of N. This multiple is the degree of the map f.

雙線性配對公式

Bilinear pairings formulation

假設流形M是緊的,無邊界的,可定向的,讓

Assuming the manifold M is compact, boundaryless, and orientable, let

τHiM

表示它的扭轉子群,令

denote the torsion subgroup of HiM and let

fHiM = HiM / τHiM

為自由部分 – 在本節中所有同調群取整係數。然後是雙線性映射,它是對偶的(解釋如下)。

be the free part – all homology groups taken with integer coefficients in this section. Then there are bilinear maps which are duality pairings (explained below).

fHiMfHn-iM→

and

τHiM τ Hn-i-1M→/.

這裡/商理性的整數,作為添加劑組。注意在扭轉連接形式中,維數中有一個-1,所以配對的維度加起來是n-1而不是n。

Here / is the quotient of the rationals by the integers, taken as an additive group. Notice that in the torsion linking form, there is a -1 in the dimension, so the paired dimensions add up to n-1 rather than to n.

第一種形式通常稱為交積,第二種形式稱為扭聯形式。假設流形M是光滑的,通過使同調類變為橫向並計算它們的有向交叉數來計算它們的交叉積。對於撓性連接形式,通過將nx作為某類z的邊界來計算x和y的配對。形式為分子分數,z與y的橫交數,分母為n。

The first form is typically called the intersection product and the 2nd the torsion linking form. Assuming the manifold M is smooth, the intersection product is computed by perturbing the homology classes to be transverse and computing their oriented intersection number.

For the torsion linking form, one computes the pairing of x and y by realizing nx as the boundary of some class z. The form is the fraction with numerator the transverse intersection number of z with y and denominator n.

對偶是對偶的說法意味著伴隨映射

The statement that the pairings are duality pairings means that the adjoint maps

fHiM→Hom( fHn-iM,)

and

τHiM→Hom( τHn-i-1M,/)

是群的同構。

are isomorphisms of groups.

這個結果是龐加萊對偶的一個應用

This result is an application of Poincaré Duality

HiMHn-iM

並結合普遍係數定理,給出了一個證明

together with the universal coefficient theorem, which gives an identification

fHn-iM ≡ Hom(Hn-iM;)

and

τHn-iM ≡ Ext(Hn-i-1M;) ≡ Hom(τHn-i-1M;/).

因此,龐加萊對偶性說,fHiM和fHn-iM是同構的,雖然沒有自然地圖給出同構,並且相似地τHiM 和τ Hn-i-1M也是同構, 雖然不是自然地。

Thus, Poincaré duality says that fHiM and fHn-iM are isomorphic, although there is no natural map giving the isomorphism, and similarly τHiM and τ Hn-i-1M are also isomorphic, though not naturally.

中間維度 Middle dimension

而對於大多數維度,龐加萊對偶性在不同的同源群之間引入了雙線性配對,在中間維度,它在一個單同島上導出了雙線性形式。得到的交形是一個非常重要的拓撲不變式。

While for most dimensions, Poincaré duality induces a bilinear pairing between different homology groups, in the middle dimension it induces a bilinear form on a single homology group. The resulting intersection form is a very important topological invariant.

「中間維度」的含義取決於奇偶性。對於更常見的偶數維n = 2k,這實際上是中間維k,在中間同調的自由部分有一個形式:

What is meant by "middle dimension" depends on parity. For even dimension n = 2k which is more common, this is literally the middle dimension k, and there is a form on the free part of the middle homology:

相比之下,對於較少討論的奇數維n = 2k+1,它是最簡單的中下維k,在這個維上同調的扭轉部分有一個形式:

By contrast, for odd dimension n = 2k+1 which is less commonly discussed, it is most simply the lower middle dimension k, and there is a form on the torsion part of the homology in that dimension:

然而,在中下維k中同源性的自由部分與中上維k+1中也存在配對:

However, there is also a pairing between the free part of the homology in the lower middle dimension k and in the upper middle dimension k+1:

所得到的群,雖然不是具有雙線性形式的單一群,卻是一個簡單的鏈復群,用代數L理論進行了研究。

The resulting groups, while not a single group with a bilinear form, are a simple chain complex and are studied in algebraic L-theory.

應用 Applications

Jozef Przytycki和Akira Yasuhara利用這種方法給出了三維透鏡空間的基本同倫和差分同構分類。

This approach to Poincaré duality was used by Józef Przytycki and Akira Yasuhara to give an elementary homotopy and diffeomorphism classification of 3-dimensional lens spaces.

託姆同構公式

Thom Isomorphism Formulation

龐加萊對偶性與湯姆同構定理密切相關,我們將在這裡解釋。對於這個證明,讓M是一個緊的,無邊界的有向n流形。設M×M為M與自身的乘積,設V為M×M中對角線的開管鄰域。考慮到映射:

Poincaré Duality is closely related to the Thom Isomorphism Theorem, as we will explain here.

For this exposition, let M be a compact, boundaryless oriented n-manifold. Let M×M be the product of M with itself, let V be an open tubular neighbourhood of the diagonal in M×M. Consider the maps:

HMHM→H(M×M) the Homology Cross ProductH(M×M)→H(M×M,(M×M)\ V) inclusion.H(M×M,(M×M)\ V)→H(νM,νM) excision map where νM is the normal disc bundle of the diagonal in M×M.H(νM,νM)→H-nM the Thom Isomorphism. This map is well-defined as there is a standard identification νM ≡ TM which is an oriented bundle, so the Thom Isomorphism applies.

結合起來,就得到了一個映射

Combined, this gives a map

也就是交點積,嚴格地說,它是上面的交點積的推廣,:但它也被稱為交點積。與Künneth定理相似的論證給出了撓性連接形式。

which is the intersection product—strictly speaking it is a generalization of the intersection product above, but it is also called the intersection product. A similar argument with the Künneth theorem gives the torsion linking form.

這種形式的龐加萊二象性已經變得相當流行,因為它提供了一種方法來定義龐加萊二象性的任何廣義同調理論,只要你有一個湯姆同調同構的同調理論。同調理論的湯姆同構定理現在被認為是同調理論的可定向性的廣義概念。例如,在複雜拓撲k理論的意義上,流形上的一個spinc結構恰恰是可定向所需要的。

This formulation of Poincaré Duality has become quite popular as it provides a means to define Poincaré Duality for any generalized homology theory provided one has a Thom Isomorphism for that homology theory.

A Thom isomorphism theorem for a homology theory is now accepted as the generalized notion of orientability for a homology theory.

For example, aspinc-structure on a manifold turns out to be precisely what is needed to be orientable in the sense of complex topological k-theory.

歸納及相關結果

Generalizations and related results

龐加萊-萊夫謝茲對偶定理是有邊界流形的一個推廣。在不可定向的情況下,考慮到局部定向的束,可以給出一個與方向性無關的陳述:看扭曲的龐加萊二象性。

The Poincaré–Lefschetz duality theorem is a generalisation for manifolds with boundary. In the non-orientable case, taking into account the sheaf of local orientations, one can give a statement that is independent of orientability: see Twisted Poincaré duality.

布蘭奇菲爾德對偶性是龐加萊對偶性的一個版本,它在流形的阿貝耳覆蓋空間的同調和相應的緊支上同調之間提供了一個同構。它用於獲得關於Alexander模塊的基本結構結果,並可用於定義結的特徵。

Blanchfield duality is a version of Poincaré duality which provides an isomorphism between the homology of an abelian covering space of a manifold and the corresponding cohomology with compact supports.

It is used to get basic structural results about the Alexander module and can be used to define the signatures of a knot.

隨著同調理論的發展,從1955年開始包括了k理論和其他傑出的理論,意識到同源H的可以取代了其他理論,一旦產品集合管構造;現在有教科書上的一般性治療。更具體地說,廣義同調理論有一個一般的龐加萊對偶定理,它需要一個同調理論的方向概念,並根據廣義的託姆同構定理來表示。在這方面的託姆同構定理可以被認為是廣義同調理論的龐加萊對偶的原始思想。

With the development of homology theory to include K-theory and other extraordinary theories from about 1955, it was realised that the homology H' could be replaced by other theories, once the products on manifolds were constructed; and there are now textbook treatments in generality.

More specifically, there is a general Poincaré duality theorem for a generalized homology theorywhich requires a notion of orientation with respect to a homology theory, and is formulated in terms of a generalized Thom Isomorphism Theorem.

The Thom Isomorphism Theorem in this regard can be considered as the germinal idea for Poincaré duality for generalized homology theories.

Verdier對偶性是對(可能是奇異的)幾何對象的適當概括,例如分析空間或模式,當交叉同源性被發展成羅伯特·麥克弗森和馬克·高瑞斯基的分層空間時,例如實的或復的代數變種,正是為了將龐加萊二元性推廣到這種分層空間。

Verdier duality is the appropriate generalization to (possibly singular) geometric objects, such as analytic spaces or schemes, while intersection homology was developed Robert MacPherson and Mark Goresky for stratified spaces, such as real or complex algebraic varieties, precisely so as to generalise Poincaré duality to such stratified spaces.

代數拓撲中還有許多其他形式的幾何二象性,包括萊夫舍茨二象性、亞歷山大二象性、霍奇二象性和s二象性。

There are many other forms of geometric duality in algebraic topology, including Lefschetz duality, Alexander duality, Hodge duality, and S-duality.

在代數上,我們可以抽象出龐加萊復形的概念,龐加萊復形是一個代數對象,它的行為類似於流形的奇異鏈復形,值得注意的是,滿足龐加萊對偶在它的同島上,相對於一個可分辨的元素(對應於基類)。這些在外科學理論中用於對流形問題進行代數化。龐加萊空間的奇異鏈復形就是龐加萊復形。這些並不都是流形,但它們不是流形的失敗可以用阻礙理論來測量。

More algebraically, one can abstract the notion of a Poincaré complex, which is an algebraic object that behaves like the singular chain complex of a manifold, notably satisfying Poincaré duality on its homology groups, with respect to a distinguished element (corresponding to the fundamental class).

These are used in surgery theory to algebraicize questions about manifolds. A Poincaré spaceis one whose singular chain complex is a Poincaré complex. These are not all manifolds, but their failure to be manifolds can be measured by obstruction theory.

相關焦點

  • 純數學|代數拓撲 Seifert-van Kampen定理
    在數學中,代數拓撲的塞夫特-範卡姆彭定理(以赫伯特·塞夫特和埃格伯特·范卡姆彭命名),有時也被稱為範卡姆彭定理,用覆蓋X的兩個開放的、路徑相連的子空間的基本組來表示拓撲空間X的基本組的結構。不幸的是,上面給出的定理沒有計算圓的基本群,而圓是代數拓撲中最重要的基本例子。其原因是圓不能實現為兩個開口集的併集與相交連通。這個問題可以通過使用在一組基點集A上的廣群π1(X,A), 根據情況的幾何形狀進行選擇來解決。因此,對於圓,使用兩個基點。
  • 拓撲學是什麼?歐拉、佩雷爾曼,研究拓撲學的都是什麼神級天才?
    拓撲學(topology)是研究幾何圖形或空間在連續改變形狀後還能保持不變的一些性質的學科。它只考慮物體間的位置關係而不考慮它們的形狀和大小。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。聽著是不是很難懂?聽過一個神解釋:在拓撲學家眼裡,咖啡杯和甜甜圈是一樣的。
  • 神秘的拓撲學,起源於遊戲的數學,柔軟的數學
    特別是,它曾直接導致過新的數學分支的創立,拓撲學就是典型的例子。黎曼本人解決了可定向閉曲面的同胚分類問題組合拓撲學的奠基人是法國數學家龐加萊。他是在分析學和力學的工作中,特別是關於複函數的單值化和關於微分方程決定的曲線的研究中,引向拓撲學問題的。他的主要興趣在流形。在1895~1904年間,他創立了用剖分研究流形的基本方法。
  • 以太的否定,洛倫茲與龐加萊的困惑,狹義相對論誕生的前夜
    法國著名數學家、物理學家龐加萊的解釋1898年,法國著名數學家、物理學家龐加萊在《時間的測量》中指出,同一事件對於不同的坐標系來說也並不一定是同時發生的,所以在不同的運動下討論同時性是沒有意義的,這也就是同時性的相對性原理!
  • 拓撲到底是什麼
    如果你曾經在網上搜索過拓撲,你肯定會遇到將甜甜圈變成咖啡杯的動畫,同樣,我給出的答案也都與此相關:為什麼甜甜圈跟咖啡杯在拓撲結構上是一樣的,立方體和球體拓撲上也是一樣的。但是這樣的答案並不能真正解釋真實的拓撲是什麼,拓撲怎麼應用以及其真正的價值是什麼。
  • 拓撲空間關係
    拓撲學是幾何學的一個分支,它研究在拓撲變換下能夠保持不變的幾何屬性——拓撲屬性拓撲有一個形象說法叫橡皮幾何學,為了得到一些拓撲的感性認識,假設歐氏平面是一張高質量無邊界的橡皮,該橡皮能夠伸長和縮短到任何理想的程度(許多地理現象模型建立的基礎就是嵌入在一個坐標空間中,在這種坐標空間中,根據常用的公式就可以測量點之間的距離及方向,這個帶坐標的空間模型叫做歐氏空間,它把空間特性轉換成實數的元組特性
  • 什麼是限韻,步韻,疊韻以及對偶對仗的區別
    許多人許多理論將對仗對偶定為一個概念,仙並不苟同,但我們初學者如果認為對仗對偶完全是一回事也未嘗不可。陝西教育出版社的《古文自學辭典》則解釋「對偶」為「修辭方法一種,……詩歌中叫『對仗』。」如此以「對偶」注「對仗」,用「對仗」釋「對偶」的輾轉解說,造成了概念的混淆其結果是使人誤以為「對偶」與「對仗」是一回事,是一個概念的兩種稱謂 那麼,究竟什麼是「對偶」?什麼是「對仗」?二者有什麼區別呢? 對偶,是一種修辭格。
  • 上海交大賈金鋒團隊在拓撲晶體絕緣體的拓撲超導電性研究再獲突破...
    近日,李耀義特別研究員、賈金鋒教授研究團隊在拓撲超導電性研究中再次獲得突破性進展。他們利用超導針尖觀測到拓撲晶體絕緣體Sn1-xPbxTe超導能隙內有多重的束縛態,這一發現為超導拓撲晶體絕緣體存在拓撲超導電性提供了非常有力的直接證據。
  • 拓撲這個難題,終於在topogun3中得以解決
    中間的區域是用來控制高模的顯示的,如高模的材質平滑顯示,線框顯示,還有貼圖等顯示,最有趣的是增加了遮罩功能(大有用處,可大大加快拓撲速度,後面會說到)右邊的界面主要是對高模還有低模的圖層顯示,方便高模和低模的隱藏,還有增加了強大的自動拓撲,高模提取,減面等用來快速增加拓撲的工具。
  • 雲計算開發實例:Python3 拓撲排序
    對一個有向無環圖(Directed Acyclic Graph簡稱DAG)G進行拓撲排序,是將G中所有頂點排成一個線性序列,使得圖中任意一對頂點u和v,若邊(u,v)∈E(G),則u在線性序列中出現在v之前。
  • 拓撲銀行,何方神聖?|十字財經
    12月11日,招商銀行與京東數字科技集團旗下網銀在線(北京)商務服務有限公司(簡稱「網銀商務」)接到銀保監會批覆,同意共同籌建招商拓撲銀行股份有限公司(以下簡稱「拓撲銀行」)。獲客、風控和運營能力,是拓撲銀行開展普惠金融的核心優勢。近年來,招行圍繞「科技」和「客戶」探索形成了一整套數位化經營模式,可以為拓撲銀行提供大量經驗。在數位化獲客方面,今年招行中報首次披露了一個關鍵數據——報告期內APP人均月登錄次數達11.31次。即便是與網際網路頭部APP相比,這一數據也並不遜色。
  • 拓撲美學,生而不凡,傳承美學經典
    唯產品有溫度,市場才有熱度這正是由拓撲美學創始人楊詩語女士提出的經營理念,她認為,在新零售行業要始終保持對產品品質與內涵的極致追求,...     「唯產品有溫度,市場才有熱度」這正是由拓撲美學創始人楊詩語女士提出的經營理念,她認為,在新零售行業要始終保持對產品品質與內涵的極致追求,唯有真正關懷用戶的感受,才能贏得更多用戶的信賴。
  • 物理所在本徵磁性拓撲絕緣體研究中獲進展
    近十幾年來,拓撲絕緣體已經成為凝聚態物理領域的一個重要研究方向。對於Z2拓撲絕緣體,其拓撲性質受到時間反演對稱性的保護。如果將Z2拓撲絕緣體的時間反演對稱性破壞,會形成一類新的拓撲態,即磁性拓撲絕緣體。磁性拓撲絕緣體可以表現出一系列新奇的物理性質,例如量子反常霍爾效應、手性馬約拉納費米子、軸子絕緣體等。
  • 拓撲美學搭載5G快車,開創新零售模式
    智慧原創,秉承初心楊詩語作為拓撲美學品牌創始人,也是拓撲美學創始的執行總裁,她曾是商道聯盟智慧家族創辦人、微商新零售功勳領銜人物以及新女性億萬圓桌俱樂部掌門人。楊詩語女神可以說是一位兼具美貌與智慧,能量滿滿,愛心滿滿的創富領袖,她創立拓撲美學的初心正是「做一家真正關懷用戶感受的企業」,她堅信:唯產品有溫度,市場才有熱度,時刻保持對產品品質與內涵的極致追求,而她也用自己的實際行動踐行了這一理念。
  • 產品有溫度,市場才有熱度——拓撲美學新品發布
    此次盛會不僅是拓撲美學戰略2.0模式升級的發布會,對拓撲美學發展繼往開來,承前啟後具有重大意義,而且更是拓撲美學全品系列新品發布會,將開啟拓撲美學發展史上嶄新的一頁。在此次新品發布會現場,拓撲美學高級產品導師孔滿枝,不僅為大家講解了拓撲美學的產品特色,而且還通過現場的產品試驗、模特體驗為大家展示了拓撲美學的神奇的賦顏效果!