【基礎】簡析三極體放大電路原理

2021-02-24 暢學電子

三極體是電流放大器件,有三個極,分別叫做集電極C,基極B,發射極E。分成NPN和PNP兩種。我們僅以NPN三極體的共發射極放大電路為例來說明一下三極體放大電路的基本原理。

下面的分析僅對於NPN型矽三極體。如上圖所示,我們把從基極B流至發射極E的電流叫做基極電流Ib;把從集電極C流至發射極E的電流叫做集電極電流Ic。這兩個電流的方向都是流出發射極的,所以發射極E上就用了一個箭頭來表示電流的方向。三極體的放大作用就是:集電極電流受基極電流的控制(假設電源能夠提供給集電極足夠大的電流的話),並且基極電流很小的變化,會引起集電極電流很大的變化,且變化滿足一定的比例關係:集電極電流的變化量是基極電流變化量的β倍,即電流變化被放大了β倍,所以我們把β叫做三極體的放大倍數(β一般遠大於1,例如幾十,幾百)。如果我們將一個變化的小信號加到基極跟發射極之間,這就會引起基極電流Ib的變化,Ib的變化被放大後,導致了Ic很大的變化。如果集電極電流Ic是流過一個電阻R的,那麼根據電壓計算公式U=R*I可以算得,這電阻上電壓就會發生很大的變化。我們將這個電阻上的電壓取出來,就得到了放大後的電壓信號了。

三極體在實際的放大電路中使用時,還需要加合適的偏置電路。這有幾個原因。首先是由於三極體BE結的非線性(相當於一個二極體),基極電流必須在輸入電壓大到一定程度後才能產生(對於矽管,常取0.7V)。當基極與發射極之間的電壓小於0.7V時,基極電流就可以認為是0。但實際中要放大的信號往往遠比0.7V要小,如果不加偏置的話,這麼小的信號就不足以引起基極電流的改變(因為小於0.7V時,基極電流都是0)。如果我們事先在三極體的基極上加上一個合適的電流(叫做偏置電流,上圖中那個電阻Rb就是用來提供這個電流的,所以它被叫做基極偏置電阻),那麼當一個小信號跟這個偏置電流疊加在一起時,小信號就會導致基極電流的變化,而基極電流的變化,就會被放大並在集電極上輸出。另一個原因就是輸出信號範圍的要求,如果沒有加偏置,那麼只有對那些增加的信號放大,而對減小的信號無效(因為沒有偏置時集電極電流為0,不能再減小了)。而加上偏置,事先讓集電極有一定的電流,當輸入的基極電流變小時,集電極電流就可以減小;當輸入的基極電流增大時,集電極電流就增大。這樣減小的信號和增大的信號都可以被放大了。

下面說說三極體的飽和情況。像上面那樣的圖,因為受到電阻Rc的限制(Rc是固定值,那麼最大電流為U/Rc,其中U為電源電壓),集電極電流是不能無限增加下去的。當基極電流的增大,不能使集電極電流繼續增大時,三極體就進入了飽和狀態。一般判斷三極體是否飽和的準則是:Ib*β〉Ic。進入飽和狀態之後,三極體的集電極跟發射極之間的電壓將很小,可以理解為一個開關閉合了。這樣我們就可以拿三極體來當作開關使用:當基極電流為0時,三極體集電極電流為0(這叫做三極體截止),相當於開關斷開;當基極電流很大,以至於三極體飽和時,相當於開關閉合。如果三極體主要工作在截止和飽和狀態,那麼這樣的三極體我們一般把它叫做開關管。

如果我們在上面這個圖中,將電阻Rc換成一個燈泡,那麼當基極電流為0時,集電極電流為0,燈泡滅。如果基極電流比較大時(大於流過燈泡的電流除以三極體的放大倍數β),三極體就飽和,相當於開關閉合,燈泡就亮了。由於控制電流只需要比燈泡電流的β分之一大一點就行了,所以就可以用一個小電流來控制一個大電流的通斷。如果基極電流從0慢慢增加,那麼燈泡的亮度也會隨著增加(在三極體未飽和之前)。

但是在實際使用中要注意,在開關電路中,飽和狀態若在深度飽和時會影響其開關速度,飽和電路在基極電流乘放大倍數等於或稍大於集電極電流時是淺度飽和,遠大於集電極電流時是深度飽和。因此我們只需要控制其工作在淺度飽和工作狀態就可以提高其轉換速度。

對於PNP型三極體,分析方法類似,不同的地方就是電流方向跟NPN的剛好相反,因此發射極上面那個箭頭方向也反了過來——變成朝裡的了。

三極體的放大作用就是:集電極電流受基極電流的控制(假設電源能夠提供給集電極足夠大的電流的話),並且基極電流很小的變化,會引起集電極電流很大的變化,且變化滿足一定的比例關係:集電極電流的變化量是基極電流變化量的β倍,即電流變化被放大了β倍,所以我們把β叫做三極體的放大倍數(β一般遠大於1,例如幾十,幾百)。如果我們將一個變化的小信號加到基極跟發射極之間,這就會引起基極電流Ib的變化,Ib的變化被放大後,導致了Ic很大的變化。如果集電極電流Ic是流過一個電阻R的,那麼根據電壓計算公式U=R*I可以算得,這電阻上電壓就會發生很大的變化。我們將這個電阻上的電壓取出來,就得到了放大後的電壓信號了。

相關焦點

  • 【基礎】三極體放大電路的基本原理
    三極體的放大作用就是:集電極電流受基極電流的控制(假設電源能夠提供給集電極足夠大的電流的話),並且基極電流很小的變化,會引起集電極電流很大的變化,且變化滿足一定的比例關係:集電極電流的變化量是基極電流變化量的β倍,即電流變化被放大了β倍,所以我們把β叫做三極體的放大倍數(β一般遠大於1,例如幾十,幾百)。
  • 三極體放大電路基本原理
    我們僅以NPN三極體的共發射極放大電路為例來說明一下三極體放大電路的基本原理。       下面的分析僅對於NPN型矽三極體。如上圖所示,我們把從基極B流至發射極E的電流叫做基極電流Ib;把從集電極C流至發射極E的電流叫做集電極電流Ic。這兩個電流的方向都是流出發射極的,所以發射極E上就用了一個箭頭來表示電流的方向(IE=IC+IB=(1+β) IB表示電流的放大)。
  • 三極體放大電路基本原理舉例說明
    三極體的放大作用就是:集電極電流受基極電流的控制(假設電源能夠提供給集電極足夠大的電流的話),並且基極電流很小的變化,會引起集電極電流很大的變化,且變化滿足一定的比例關係:集電極電流的變化量是基極電流變化量的β倍,即電流變化被放大了β倍,所以我們把β叫做三極體的放大倍數(β一般遠大於1,例如幾十,幾百)。
  • 【電子大講堂】三極體基本放大電路解析
    我們僅以NPN三極體的共發射極放大電路為例來說明一下三極體放大電路的基本原理。下面的分析僅對於NPN型矽三極體。如上圖所示,我們把從基極B流至發射極E的電流叫做基極電流Ib;把從集電極C流至發射極E的電流叫做集電極電流Ic。這兩個電流的方向都是流出發射極的,所以發射極E上就用了一個箭頭來表示電流的方向。
  • 一定要掌握的三極體放大電路設計
    (1)分析電路中各元件的作用;(2)解放大電路的放大原理;(3)能分析計算電路的靜態工作點;(4)理解靜態工作點的設置目的和方法。以上四項中,最後一項較為重要。R1、R2為三極體V1的直流偏置電阻,什麼叫直流偏置?簡單來說,做工要吃飯。要求三極體工作,必先要提供一定的工作條件,電子元件一定是要求有電能供應的了,否則就不叫電路了。在電路的工作要求中,第一條件是要求要穩定,所以,電源一定要是直流電源,所以叫直流偏置。為什麼是通過電阻來供電?電阻就象是供水系統中的水龍頭,用調節電流大小的。
  • 三個最簡單的三極體放大電路
    BC547三極體極性:字面朝上,左→右 C、B、E由於一隻電晶體的放大倍數有限,想讓LED發光更明亮,或許你需要用點力兩隻手分別捏住兩個點。你的身體相當於一個電阻,電流流過你的身體(手指)給三極體基極提供一個偏置電流。電晶體將流過你手指的電流放大約200倍,這足以點亮LED。
  • 從載流子層面分析三極體放大的原理
    三極體也稱雙極型電晶體(BipolarJunction Transistor, BJT),是一種電流控制電流的半導體器件,具有電流放大作用,其主要作用是把微弱輸入信號放大成幅值較大的電信號,是很多常用電子電路的核心元件。
  • 三極體開關電路圖原理及設計詳解
    TTL電晶體開關電路按驅動能力分為小信號開關電路和功率開關電路;按電晶體連接方式分為發射極接地(PNP電晶體發射極接電源)和射級跟隨開關電路。1.發射極接地開關電路1.1NPN型和PNP型基本開關原理圖:
  • 三極體放大原理,有人用三國講明白了!
    它是一種電流控制電流的半導體器件,具有電流放大作用,其主要作用是把微弱輸入信號放大成幅值較大的電信號,是很多常用電子電路的核心元件。三極體的原理圖符號主要有兩種,如圖1所示。圖1Q1為NPN管,Q2為PNP管,E極箭頭方向代表發射結正向偏置時電流的實際方向,它們對應的基本結構如圖2所示。
  • 三極體放大原理,這篇文章講清楚了!
    三極體的原理圖符號主要有兩種,如圖1所示。圖1Q1為NPN管,Q2為PNP管,E極箭頭方向代表發射結正向偏置時電流的實際方向,它們對應的基本結構如圖2所示。三極體的實物圖下面我們以NPN三極體為例詳細講解三極體放大狀態的工作原理。話說天下大勢,分久必合,合久必分,在這片由三塊半導體組成的小區域內,也上演了一部爭霸史,故事就發生在圖3所示的這片區域。在沒有任何處理的NPN三極體施加了兩個電壓之後,如圖4所示。
  • 晶體三極體放大電路和MOS管工作原理
    晶體三極體可以組成三種基本放大電路,如圖5-38所示。
  • 三種常用的三極體開關電路總結
    在今天的文章中,小編為大家總結了三種常用的三極體開關電路圖,下面就讓我們一起來看看吧。 靈敏光控三極體開關電路 圖1 上圖中,圖1所展示的是一種常見的三極體開關電路,這一電路也被稱為靈敏光控光敏電路。這一電路系統在設計時主要採用了達林頓型光敏三極體作敏感元件,所以對弱光較敏感。
  • 三極體的的概念及其工作原理
    三極體在我們數字電路和模擬電路中都有大量的應用,在我們開發板上也用了多個三極體。
  • 圖說晶體三極體的工作原理及三個狀態.
    希望通過下面的「圖解」讓初學者對三極體有一個形象的認識。三極體是一個以b(基極)電流Ib 來驅動流過CE 的電流Ic 的器件,它的工作原理很像一個可控制的閥門。如果放大倍數是100,那麼當藍色小水流為1 千克/小時,那麼就允許大管子流過100千克/小時的水。三極體的原理也跟這個一樣,放大倍數為100 時,當Ib(基極電流)為1mA 時,就允許100mA 的電流通過Ice。有了這個形象的解釋之後,我們再來看一個單片機裡常用的電路。
  • 三極體開關電路,一看就懂
    大家好,歡迎關注阮工頻道前面發過一篇文章:從這7個開關元件入手,你也可以輕鬆看懂線路圖在實際飛機線路圖中,三極體也是一種常見的電路開關元件。本次轉載公眾號電子製作站一篇文章,專門介紹三極體開關電路原理的,相信看完你也會了。
  • 半導體三極體的工作原理
    NPN型半導體三極體的基本工作原理完全一樣,下面以NPN型半導體三極體為例來說明其內部的電流傳輸過程,進而介紹它的工作原理。半導體三極體常用的連接電路如圖15-3(a)所示。半導體三極體內部的電流傳輸過程如圖15-3(b)所示。半導體三極體中的電流傳輸可分為三個階段。1、發射區向基區發射電子電源接通後,發射結為正向連接。在正向電場作用下,發射區的多數載流子(電子)的擴散運動加強。
  • 三極體的基本工作原理,這個講的很全!
    晶體三極體是p型和n型半導體的有機結合,兩個pn結之間的相互影響,使pn結的功能發生了質的飛躍,具有電流放大作用。晶體三極體按結構粗分有npn型和pnp型兩種類型。如圖2-17所示,(用Q、VT、PQ表示)三極體之所以具有電流放大作用,首先,製造工藝上的兩個特點:
  • 三極體開關電路設計詳細過程
    三極體除了可以當做交流信號放大器之外,也可以做為開關之用。
  • 半導體三極體的工作原理(經典圖文)
    PNP型半導體三極體和NPN型半導體三極體的基本工作原理完全一樣,下面以NPN型半導體三極體為例來說明其內部的電流傳輸過程,進而介紹它的工作原理
  • 三極體開關電路簡單應用介紹
    能夠把微弱信號放大成較大電信號, 有PNP和NPN兩種。它有截止狀態、放大狀態、飽和導通三種工作狀態,我們經常用到的就是飽和導通狀態,處於飽和狀態時候,三極體失去了電流放大作用,集電極C與發射極E之間的電壓很小,Vce兩極電壓相當於為零,也就是說短路狀態,這種狀態經常與截止狀態配合一起用作開關作用,特別是在小信號小電流場合。