功率放大器那點事

2020-11-22 電子產品世界

射頻功率放大器RFPA的功能

本文引用地址:http://www.eepw.com.cn/article/259785.htm

射頻功率放大器RFPA是發射系統中的主要部分,其重要性不言而喻。在發射機的前級電路中,調製振蕩電路所產生的射頻信號功率很小,需要經過一系列的放大一緩衝級、中間放大級、末級功率放大級,獲得足夠的射頻功率以後,才能饋送到天線上輻射出去。為了獲得足夠大的射頻輸出功率,必須採用射頻功率放大器。功率放大器往往是固定設備或終端的最昂貴、最耗電、效率最低的器件。

在調製器產生射頻信號後,射頻已調信號就由RFPA將它放大到足夠功率,經匹配網絡,再由天線發射出去。



圖1 發射系統框圖

放大器的功能,即將輸入的內容加以放大並輸出。輸入和輸出的內容,我們稱之為「信號」,往往表示為電壓或功率。對於放大器這樣一個「系統」來說,它的「貢獻」就是將其所「吸收」的東西提升一定的水平,並向外界「輸出」。這一「提升的貢獻」,即為放大器存在的「意義」所在。如果放大器能夠有好的性能,那麼它就可以貢獻更多,這才體現出它自身的「價值」。如果放大器的初始「機制設計」存在著一定的問題,那麼在開始工作或者工作了一段時間之後,不但不能再提供任何「貢獻」,反而有可能出現一些不期然的「震蕩」,這種「震蕩」,對於外界還是放大器自身,都是災難性的。

射頻功率放大器RFPA的分類

根據工作狀態的不同,功率放大器分類如下:



圖2 功率放大器的分類

射頻功率放大器的工作頻率很高,但相對頻帶較窄,射頻功率放大器一般都採用選頻網絡作為負載迴路。射頻功率放大器可以按照電流導通角的不同,分為甲 (A)、乙(B)、丙(C)三類工作狀態。甲類放大器電流的導通角為360°,適用於小信號低功率放大,乙類放大器電流的導通角等於180°,丙類放大器電流的導通角則小於180°。乙類和丙類都適用於大功率工作狀態,丙類工作狀態的輸出功率和效率是三種工作狀態中最高的。射頻功率放大器大多工作於丙類, 但丙類放大器的電流波形失真太大,只能用於採用調諧迴路作為負載諧振功率放大。由於調諧迴路具有濾波能力,迴路電流與電壓仍然接近於正弦波形,失真很小。

除了以上幾種按照電流導通角分類的工作狀態外,還有使電子器件工作於開關狀態的丁(D)類放大器和戊(E)類放大器,丁類放大器的效率高於丙類放大器。

射頻功率放大器RFPA的性能指標

射頻功率放大器RFPA的主要技術指標是輸出功率與效率,如何提高輸出功率和效率,是射頻功率放大器設計目標的核心。通常在射頻功率放大器中,可以用LC諧振迴路選出基頻或某次諧波,實現不失真放大。總體來說,放大器的評判大概存在著如下指標:

增益。這是輸入和輸出之間比值,代表著放大器的貢獻。好的放大器,都是在其「自身能力的範圍內」,儘可能多的貢獻出「產出」。


工作頻率。這代表著放大器對不同頻率信號的承載能力。


工作帶寬。這決定著放大器能夠在多大範圍內產生「貢獻」。對於一個窄帶放大器來說,其自身設計即便沒有問題,但是其貢獻可能是有限的。


穩定性。每一個電晶體都存在著潛在的「不穩定區域」。放大器的「設計」需要消除這些潛在的不穩定。放大器的穩定性包括兩種,潛在不穩定和絕對穩定。前者可能在特定條件和環境下出現不穩定現象,後者則能夠保證在任何情況下保持穩定。穩定性問題之所以重要,是因為不穩定意味著「震蕩」,這時放大器不但影響自身,還會將不穩定因素輸出。


最大輸出功率。這個指標決定著放大器的「容量」。對於「大的系統」來說,希望他們在犧牲一定的增益的情況下能夠輸出更大的功率。


效率。放大器都要消耗一定「能量」,還實現一定的「貢獻」。其貢獻與消耗之比,即為放大器的效率。能夠貢獻更多消耗更少,就是好的放大器。


線性。線性所表徵的是放大器對於大量輸入進行正確的反應。線性的惡化表示放大器在過量的輸入的狀態下將輸入「畸變」或「扭曲」。好的放大器不應該表現出這種「畸形」的性質。


射頻功率放大器RFPA的電路組成

放大器有不同類型,簡化之,放大器的電路可以由以下幾個部分組成:電晶體、偏置及穩定電路、輸入輸出匹配電路

1、電晶體

電晶體有很多種,包括當前還有多種結構的電晶體被發明出來。本質上,電晶體的工作都是表現為一個受控的電流源或電壓源,其工作機制是將不含內容的直流的能量轉化為「有用的」輸出。直流能量乃是從外界獲得,電晶體加以消耗,並轉化成有用的成分。一個電晶體,我們可以視之為「一個單位」。不同的電晶體不同的「能力」,例如其承受功率的能力有區別,這也是因為其能獲取的直流能量的能力不同所致;例如其反應速度不同,這決定它能工作在多寬多高的頻帶上;例如其面向輸入、輸出端的阻抗不同,及對外的反應能力不同,這決定了給它匹配的難易程度。

2、偏置及穩定電路

偏置和穩定電路是兩種不同的電路,但因為他們往往很難區分,且設計目標趨同,所以可以放在一起討論。

電晶體的工作需要在一定的偏置條件下,我們稱之為靜態工作點。這是電晶體立足的根本,是它自身的「定位」。每個電晶體都給自己進行了一定的定位,其定位不同將決定了它自身的工作模式,在不同的定位上也存在著不同的性能表現。有寫定位點上起伏較小,適合於小信號工作;有些定位點上起伏較大,適合於大功率輸出;有些定位點上索取較少,釋放純粹,適合於低噪聲工作;有些定位點,電晶體總是在飽和和截至之間徘徊,處於開關狀態。一個恰當的偏置點,是正常工作的礎。

穩定電路一定要在匹配電路之前,因為電晶體需要將穩定電路作為自身的一部分存在,再與外界接觸。在外界看來,加上穩定電路的電晶體,是一個「全新的」電晶體。它做出一定的「犧牲」,獲得了穩定性。穩定電路的機制能夠保證電晶體順利而穩定的運轉。

3、輸入輸出匹配電路

匹配電路的目的是在選擇一種接受的方式。對於那些想提供更大增益的電晶體來說,其途徑是全盤的接受和輸出。這意味著通過匹配電路這一個接口,不同的電晶體之間溝通更加順暢,對於不同種的放大器類型來說,匹配電路並不是只有「全盤接受」一種設計方法。一些直流小、根基淺的小型管,更願意在接受的時候做一定的阻擋,來獲取更好的噪聲性能,然而不能阻擋過了頭,否則會影響其貢獻。而對於一些巨型功率管,則需要在輸出時謹小慎微,因為他們更不穩定,同時,一定的保留有助於他們發揮出更多的「不扭曲的」能量。

射頻功率放大器RFPA穩定的實現方式

每一個電晶體都是潛在不穩定的。好的穩定電路能夠和電晶體融合在一起,形成一種「可持續工作」的模式。穩定電路的實現方式可劃分為兩種:窄帶的和寬帶的。

窄帶的穩定電路是進行一定的增益消耗。這種穩定電路是通過增加一定的消耗電路和選擇性電路實現的。這種電路使得電晶體只能在很小的一個頻率範圍內貢獻。另外一種寬帶的穩定是引入負反饋。這種電路可以在一個很寬的範圍內工作。

不穩定的根源是正反饋,窄帶穩定思路是遏制一部分正反饋,當然,這也同時抑制了貢獻。而負反饋做得好,還有產生很多額外的令人欣喜的優點。比如,負反饋可能會使電晶體免於匹配,既不需要匹配就可以與外界很好的接洽了。另外,負反饋的引入會提升電晶體的線性性能。

射頻功率放大器RFPA的效率提升技術

電晶體的效率都有一個理論上的極限。這個極限隨偏置點(靜態工作點)的選擇不同而不同。另外,外圍電路設計得不好,也會大大降低其效率。目前工程師們對於效率提升的辦法不多。這裡僅講兩種:包絡跟蹤技術與Doherty技術。

包絡跟蹤技術的實質是:將輸入分離為兩種:相位和包絡,再由不同的放大電路來分別放大。這樣,兩個放大器之間可以專注的負責其各自的部分,二者配合可以達到更高的效率利用的目標。

Doherty技術的實質是:採用兩隻同類的電晶體,在小輸入時僅一個工作,且工作在高效狀態。如果輸入增大,則兩個電晶體同時工作。這種方法實現的基礎是二隻電晶體要配合默契。一種電晶體的工作狀態會直接的決定了另一支的工作效率。


手機射頻模塊功率放大器(PA)市場情況

手機功率放大器領域是目前手機裡無法集成化的元件,手機性能、佔位面積、通話質量、手機強度、電池續航能力都由功率放大器決定。

功率放大器領域主要廠家是RFMD、Skyworks、TriQuint、Renesas、NXP、Avago、ANADIGICS。現在,原本是PA企 業合作夥伴的高通,也直接加入到PA市場中,將在2013年下半年推出以CMOS製程生產的PA,支持LTE-FDD、LTE-TDD、WCDMA、 EV-DO、CDMA 1x、TD-SCDMA與GSM/EDGE七種模式,頻譜將涵蓋全球使用中的逾40個頻段,以多頻多模優勢宣布進軍PA產業。

PA市場經歷了LDMS PA「擂主」時代之後,砷化鎵(GaAs)PA成為3G時代PA市場的「擂主」。當年帶領砷化鎵攻打PA市場的TriQuint正在積極布局砷化鎵的藍圖,針對3G/4G智慧型手機擴展連接推出高效率多頻多模功率放大器MMPA。

而高通以CMOS PA攻擂PA市場,未來PA可能會成為手機平臺的一部分,並會出現手機晶片平臺企業收購、兼併PA企業的現象。

如何集成這些不同頻段和制式的功率放大器是業界一直在研究的重要課題。目前有兩種方案:一種是融合架構,將不同頻率的射頻功率放大器PA集成;另一種架構則是沿信號鏈路的集成,即將PA與雙工器集成。兩種方案各有優缺點,適用於不同的手機。融合架構,PA的集成度高,對於3個以上頻帶巨有明顯的尺寸優 勢,5-7個頻帶時還巨有明顯的成本優勢。缺點是雖然PA集成了,但是雙工器仍是相當複雜,並且PA集成時有開關損耗,性能會受影響。而對於後一種架構,性能更好,功放與雙功器集成可以提升電流特性,大約可以節省幾十毫安電流,相當於延長15%的通話時間。所以,業內人士的建議是,大於6個頻段時(不算 2G,指3G和4G)採用融合架構,而小於四個頻段時採用PA與雙工器集成的方案PAD。目前TriQuint可提供兩種架構的方案,RFMD主要偏向於 融合PA的架構,Skyworks偏向於多頻PAD方案。

對於手機PA,GaAsHBT將來會被廣泛應用。GaNHEMT憑藉高效率的優點可能在某些高端產品中有機會。考慮到4G/LTE近來日益強化對線性和功率的更高要求,Si-CMOS一般不認為有機會取代GaAs HBT。因此,GaAs HBT會繼續保持幾乎100%的市場份額。

相關焦點

  • 射頻功率放大器你應該知道的事
    射頻功率放大器你應該知道的事 佚名 發表於 2019-11-10 09:58:17 身為射頻工程師,工作多多少少都會涉及到功率放大器。功率放大器可以說是很多射頻工程師繞不過的坎。
  • 功率放大器的性能指標,功率放大器的應用
    (二)、頻率響應  頻率響應反映功率放大器對音頻信號各頻率分量的放大能力,功率放大器的頻響範圍應不底於人耳的聽覺頻率範圍,因而在理想情況下,主聲道音頻功率放大器的工作頻率範圍為20-20kHz。國際規定一般音頻功放的頻率範圍是40-16 kHz±1.5dB。
  • 低頻功率放大器的介紹
    低頻功率放大器的介紹低頻功率放大器,它是用來放大低頻信號功率的,由於它通常處於低頻放大器的最後一級,也稱為末級放大器。它是變壓器耦合五極管功率放大線路所組成單管功率放大器,通常工作於甲類。(一)低頻功率放大器的工作過程其工作過程與低頻電壓放大器相似,電壓放大和功率放大雖然都是放大器,但是對功率放大器的主要矛盾方面不是大的電壓放大量,而是獲得足夠的音頻功率推動終端負載(揚聲器、耳機等)工作。當柵極引入音頻信號電壓時,在陽極變壓器初級中將有相應的交變陽流流過,並在次級電路中產生交變電流,使終端負載獲得音頻交流功率而工作。
  • 功率放大器分類及D類功率放大器的工作原理
    首先搞明白什麼是功率放大器? 說明放大的是功率而不是電流也不是電壓對不對 ? 它是怎麼工作的: 通過三極體的電流控制作用把電源的功率轉換成按照輸入信號變化的電流,利用三極體的放大作用, 集電極的電流永遠是基極電流的放大,所以就可以得到放大的電流,然後經過不斷地電流和電壓放大,就完成了功率放大。
  • 關於低頻功率放大器的介紹
    它是變壓器耦合五極管功率放大線路所組成單管功率放大器,通常工作於甲類。 (一)低頻功率放大器的工作過程 其工作過程與低頻電壓放大器相似,電壓放大和功率放大雖然都是放大器,但是對功率放大器的主要矛盾方面不是大的電壓放大量,而是獲得足夠的音頻功率推動終端負載(揚聲器、耳機等)工作。
  • 功率放大器的分類及其參數
    1、純甲類功率放大器  純甲類功率放大器又稱為A類功率放大器(Class A),它是一種完全的線性放大形式的放大器。高頻功率放大器是通信系統中發送裝置的重要組件。按其工作頻帶的寬窄劃分為窄帶高頻功率放大器和寬帶高頻功率放大器兩種,窄帶高頻功率放大器通常以具有選頻濾波作用的選頻電路作為輸出迴路,故又稱為調諧功率放大器或諧振功率放大器;寬帶高頻功率放大器的輸出電路則是傳輸線變壓器或其他寬帶匹配電路,因此又稱為非調諧功率放大器。高頻功率放大器是一種能量轉換器件,它將電源供給的直流能量轉換成為高頻交流輸出。
  • 精彩繼續:各种放大器電路分析薈萃之功率放大器
    一:【功率放大器】供給負載一定輸出功率的放大器叫做功率放大器。它是收音機、擴音機或其他電子設備的末級,它推動揚聲器發出聲音,使電動機轉動,使記錄儀表動作等。由於變壓器耦合損耗小,又能變換阻抗,使負載和電晶體相匹配,所以功率放大器廣泛採用變壓器耦合電路。音頻功率放大器可以根據不同的要求,採用甲類放大器、乙類放大器和甲乙類放大器。
  • 音頻放大器的額定功率
    如何區分額定功率參數定義的優劣呢?對於一個好的額定功率參數來說,其所有規定參考點都應該是可測量的。  歐姆定律表明了電壓、電流以及負載之間的關係,V=I×R,其中V為電壓;I為電流,單位為安培;R為負載電阻,單位為歐姆。  功率是單位時間內所做的功,表達式為:  P=V×I=V2/R=I2×R。
  • Doherty功率放大器設計與仿真分析
    而用普通的回退法生產的WCDMA功率放大器符合指標的只能做到幾瓦,這個功率用在基站上是遠遠不夠的,只能用在一般的小型直放站上。 功率放大器的線性度和效率是設計功率放大器的重點。在線性度方面,前饋結構是目前比較成熟的結構,廣泛運用於現代通信系統中,數字預失真在業界則被認為是功率放大器線性化的方向。而隨著現代通信的發展,效率也開始越來越被關注。
  • 音頻功率放大器的使用
    圖2-25所示是音頻功率放大器在整個放大系統中的位置示意圖。與音頻功率放大器前、後連接的電路是:負載為揚聲器電路,輸入信號Ui來自音量電位器RP1動片的輸出信號。 2.音頻功率放大器中各單元電路作用 (1)電壓放大級。用來對輸入信號進行電壓放大,使加到推動級的信號電壓達到一定的程度。根據機器對音頻輸出功率要求的不同,電壓放大器的級數不等,可以只有一級電壓放大器,也可以是採用多級電壓放大器。 (2)推動級。
  • 射頻功率放大器RFPA的功能及分類
    射頻功率放大器RFPA的功能射頻功率放大器RFPA是發射系統中的主要部分,其重要性不言而喻。在發射機的前級電路中,調製振蕩電路所產生的射頻信號功率很小,需要經過一系列的放大 一緩衝級、中間放大級、末級功率放大級,獲得足夠的射頻功率以後,才能饋送到天線上輻射出去。為了獲得足夠大的射頻輸出功率,必須採用射頻功率放大器。
  • UHF平衡功率放大器的設計與實現
    2.3 直流工作點的確定  在電晶體的技術參數中,半導體廠家通常會給出放大器晶片的直流工作電壓和電流。本設計的放大器晶片FP31QF採用技術參數給定的(Vds=9 V,Ids=450 mA)直流工作點來設計直流偏置電路。
  • 射頻/微波通信中的低噪聲放大器和功率放大器作用分析
    一般來說,更高集成度,比如將放大器和其它收發器件一起嵌入在晶片上,仍然受到小信號設計的歡迎。而大多數大信號放大器或功率放大器仍採用分立電晶體和分立匹配器件進行設計。功率電晶體的體積本身就要比低噪聲或小信號電晶體大。它們比低噪聲電晶體散發更多的熱量,需要更大的支撐性(阻抗匹配、供電)無源器件,這些都使得功率放大器的體積要大過低噪聲放大器 (LNA)。
  • 甲類功率放大器電路、特點及功率計算
    打開APP 甲類功率放大器電路、特點及功率計算 doodle 發表於 2017-01-18 15:56:33 本文將介紹音頻功率放大器的甲類放大器
  • 射頻功率放大器模塊研究分析
    射頻功率放大器是發射機的末級,它將已調製的頻帶信號放大到所需要的功率,保證在覆蓋區域內的接收機可以收到滿意的信號電平,但不能過於幹擾相鄰信道的通信,同時又要儘量地保持放大後的大功率信號不失真畸變。這些不同方面的要求使得功率放大器的設計者要面面俱到地考慮到很多指標的平衡,功率放大器的設計也成為無線通信系統設計過程中的關鍵步驟之一。
  • 固態射頻功率放大器技術及分類
    電路結構和原理 射頻功率放大器不同於其它工作於甲類、乙類、丙類的電子管射頻功率放大器,不需要高電壓;也不同於其它低頻功率放大器,沒有多少帶寬。丁類放大器中場效應管工作於開關狀態,漏極耗散功率非常低,雖然開、關過度期工作在線性區功率很大,但工作頻率高,過度期非常短,工作效率比以往功率放大器大大提高,實際上就可以做到百分之九十以上。
  • 功率放大器的主要性能指標
    5,信噪比,功率放大器的額定輸出電壓和功率放大器的固有輸出噪聲電壓之比,一般用db表示,專業使用功率放大器的寬帶信噪比一般為94db以上。   6,諧波失真,指在功率放大器輸出額定功率時和1%額定功率使輸出信號中產生的輸入信號以外的諧波成分,一般用百分率表示,1%額定功率時的失真主要考慮交越失真,專業使用的功率放大器的諧波失真一般小於0.5%。
  • 基於ADS的多級功率放大器設計與仿真
    本設計利用ADS軟體完成了各個部分電路的設計,利用Load-pull、Source-pull相結合的技術,Momentum技術等解決功率放大器設計中的輸入輸出匹配網絡的難點。1 北鬥導航射頻模塊發射部分 射頻模塊的發射部分可採用如圖1所示的電路結構方案,它主要由ALC基帶放大器、低通濾波器、第一上變頻器、中頻帶通濾波器、APC中頻放大器、第二上變頻器、鎖相頻率合成器、高穩定基準源、射頻帶通濾波器、射頻功率放大器等單元電路組成。
  • 詳解基站功率放大器ADS仿真與測試設計
    2 基站功率放大器的技術要求 作為優化網絡信號覆蓋的一種解決方案,基站功率放大器(加塔頂放大器) 具有較高的實用價值。 基站功放作為基站射頻信號的輸出必須保證其輸出信號滿足移動通信系統的技術規範對空中射頻信號的所有技術要求。主要有以下幾個方面的要求: (1) 輸出功率。
  • 基於場效應管的功率放大器設計
    對於音頻功率放大器而言,最好聽的莫過於甲類放大器。根據頻率分析的結果,由集成運算放大器構成的前級聲音單薄、缺乏活力。所以,可不可以前級採用單管甲類放大器,後級採用甲乙類功率放大器?這樣既兼顧聽音需要,又兼顧效率的需要。目前,電子管音頻功率放大器仍然佔據著音響器材高端市場。能不能用場效應電晶體(FET),實現電子管放大器那樣的醇厚悠長的聲音呢?