世界級千禧難題「納維-斯託克斯方程」:數學史上最複雜的公式

2020-12-01 騰訊網

相比起黎曼猜想、費馬大定理、哥德巴赫猜想等全球知名的難題,納維-斯託克斯方程的存在感很低,即使在世界千禧年七大難題裡,也很少會有人提及,最重要的原因就是,這個難題實在是不太好理解,尤其對於普通人而言,甚至名列榜首的P/NP問題普通人都可以揣摩到一些,但就是很難理解納維—斯託克斯方程,這也是為什麼民科很少觸及這個問題的原因。

大家可以看看百度百科上對這個難題的描述:

起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維-斯託克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰在於對數學理論作出實質性的進展,使我們能解開隱藏在納維葉-斯託克斯方程中的奧秘。

沒頭沒尾,你甚至在這段話裡都很難揣測出這個難題究竟描述的是什麼問題,流露出一股玄學的問題,今天我們就來聊聊納維-斯託克斯方程。

這個方程並不是一個人提出來的,1775年,著名數學家歐拉,對,沒有錯就是數學界四大天王歐拉,他如今又來摻和流體力學了,他在《流體運動的一般原理》一書中根據無粘性流體運動時流體所受的力和動量變化從而推導出了一組方程。

方程如下:(ax D +bxD+c)y=f(x)(只是其中一種形式,還有泛函極值條件的微分表達式等),這是屬於無粘性流體動力學(理想流體力學)中最重要的基本方程,是指對無粘性流體微團應用牛頓第二定律得到的運動微分方程,它描述理想流體的運動規律。奠定了理想流體力學基礎。

粘性流體是指粘性效應不可忽略的流體。自然界中的實際流體都是具有粘性,所以實際流體又稱粘性流體,是指流體質點間可流層間因相對運動而產生摩擦力而反抗相對運動的性質。

1821年,著名工程師納維推廣了歐拉的流體運動方程,考慮了分子間的作用力,從而建立了流體平衡和運動的基本方程。方程中只含有一個粘性常數。

1845年斯託克斯從連續統的模型出發,改進了他的流體力學運動方程,得到有兩個粘性常數的粘性流體運動方程的直角坐標分量形式,這就是後世所說的納維-斯託克斯方程。

納維-斯託克斯方程有很多種表達形式

解釋納維-斯託克斯方程的細節之前,首先,必須對流體作幾個假設。第一個是流體是連續的。這強調它不包含形成內部的空隙,例如,溶解的氣體氣泡,而且它不包含霧狀粒子的聚合。另一個必要的假設是所有涉及到的場,全部是可微的,例如壓強P,速度v,密度ρ,溫度Q等等。該方程從質量,動量守恆,和能量守恆的基本原理導出。

對此,有時必須考慮一個有限的任意體積,稱為控制體積,在其上這些原理很容易應用。該有限體積記為ω,而其表面記為 ω。該控制體積可以在空間中固定,也可能隨著流體運動。

可以說納維-斯託克斯方程是眾多科學家和工程師的推動下產生的,是一組描述像液體和空氣這樣的流體物質的方程。這些方程建立了流體的粒子動量的改變率(力)和作用在液體內部的壓力的變化和耗散粘滯力(類似於摩擦力)以及引力之間的關係。這些粘滯力產生於分子的相互作用,能告訴我們液體有多粘。這樣,納維-斯託克斯方程描述作用於液體任意給定區域的力的動態平衡。

在流體力學中,有很多方程,但很多方程都和納維爾-斯託克斯方程有著聯繫,納維-斯託克斯方程可以說描述了流體領域的大部分條件,當然了,該方程也有其適用範圍,該方程只適用於牛頓流體。

什麼是牛頓流體呢?簡單說就是:任一點上的剪應力都同剪切變形速率呈線性函數關係的流體。一般高黏度的流體是不滿足這種關係的,說明牛頓流體和非牛頓流體有個簡單的例子就是大家熟知的虹吸現象。在低黏度下,虹吸要進行下去,吸取口必須在頁面以下,但非牛頓流體的高黏度流體下,吸取口哪怕高於液面,其虹吸依然能夠進行,因為黏度太大了。

而對於工程應用來說,大部分情況還是處理牛頓流體,或者可以近似為牛頓流體。可以說,該方程在流體力學中起著基礎性的作用,但也起著決定性的作用。

關於這組方程所涉及的難題就是,如何用數學理論闡明這組方程。對,甚至用數學理論闡明用於描述奇特黑洞的愛因斯坦場方程都會比闡述納維-斯託克斯方程更簡單一些。

所以有關納維-斯託克斯方程其解的數學性質有關的數學問題被稱為納維-斯託克斯方程解的存在性與光滑性。

儘管納維-斯託克斯方程可以描述空間中流體(液體或氣體)的運動。納維-斯託克斯方程式的解可以用到許多實際應用的領域中。比如可以運用到模擬天氣,洋流,管道中的水流,星系中恆星的運動,翼型周圍的氣流。它們也可以用於飛行器和車輛的設計,血液循環的研究,電站的設計,汙染效應的分析等等。

不過目前對於納維-斯託克斯方程式解的理論研究還是不足,尤其納維-斯託克斯方程式的解常會包括紊流。

紊流又稱湍流,是流體的一種流動狀態。當流速很小時,流體分層流動,互不混合,稱為層流,或稱為片糖;逐漸增加流速,流體的流線開始出現波狀的擺動,擺動的頻率及振幅隨流速的增加而增加,此種流況稱為過渡流;當流速增加到很大時,流線不再清楚可辨,流場中有許多小漩渦,稱為湍流,又稱為亂流、擾流或紊流。(飛機最怕遇見湍流)

雖然紊流在科學及工程中非常的重要,但是紊流無序性、耗能性、 擴散性。至今仍是未解決的物理學問題之一。

另外,許多納維-斯託克斯方程式解的基本性質也都尚未被證明。因為納維-斯託克斯方程依賴微分方程來描述流體的運動。不同於代數方程,這些方程不尋求建立所研究的變量(譬如速度和壓力)的關係,而尋求建立這些量的變化率或通量之間的關係。用數學術語來講,這些變化率對應於變量的導數。其中,最簡單情況的0粘滯度的理想流體的納維-斯託克斯方程表明,加速度(速度的導數,或者說變化率)是和內部壓力的導數成正比的。

這表示對於給定的物理問題,至少要用微積分才可以求得其納維-斯託克斯方程的解。實用上,也只有最簡單的情況才能用這種方法獲得已知解。這些情況通常涉及穩定態(流場不隨時間變化)的非紊流,其中流體的粘滯係數很大或者其速度很小(低雷諾數)。

對於更複雜的情形,例如厄爾尼諾這樣的全球性氣象系統或機翼的升力,納維-斯託克斯方程的解必須藉助計算機才能求得。這個科學領域稱為計算流體力學。

例如數學家就尚未證明在三維座標,特定的初始條件下,納維-斯託克斯方程式是否有符合光滑性的解。也尚未證明若這樣的解存在時,其動能有其上下界。

而千禧年關於納維-斯託克斯方程的問題則更為困難,它給出的問題是:在三維的空間及時間下,給定一起始的速度場,存在一向量的速度場及純量的壓強場,為納維-斯託克斯方程式的解,其中速度場及壓強場需滿足光滑及全局定義的特性。

注意,世界千禧年七大數學問題中每個數學問題的官方陳述除了P/NP問題之外,都是由此領域或者在此問題上做出過成果的菲爾茲獎得主進行撰寫,確保能夠精煉概括出問題,從而保證問題的嚴謹性,而P/NP問題因為涉及到計算機方面,所以官方陳述是由圖靈獎得主史蒂芬·庫克撰寫,納維-斯託克斯方程存在性與光滑性。查爾斯·費夫曼撰寫的官方陳述

如果你沒有辦法理解,你可以簡單理解成,科學家希望可以找出納維-斯託克斯方程的通解,也就是說證明方程的解總是存在。換句話說,這組方程能否描述任何流體,在任何起始條件下,未來任一時間點的情況。

一組用數學理論闡明都困難的方程組,你還需要去證明這個方程的解總是存在。這讓許多科學家為之崩潰。

目前來說,目前只有大約一百多個特解被解出來。而數學家讓·勒雷在1934年時證明了所謂納維-斯託克斯問題弱解的存在,此解在平均值上滿足納維-斯託克斯問題,但無法在每一點上滿足。

而自此之後,關於納維-斯託克斯問題的研究就停滯不前,所以它也被稱為最難的數學或物理公式,直到 80 年以後,陶哲軒在納維-斯託克斯問題上發表了文章《Finite time blowup for an averaged three-dimensional Navier-Stokes equation》,他的主要目的是將納維-斯託克斯方程全局正則性問題的超臨界狀態屏障形式化。粗略地說,就是抽像地建立納維-斯託克斯方程的全局正則性是不可能的。陶哲軒認為,相信抽象方法(基於能量等式的泛函分析方法比如半群等)和純粹的調和分析應該是不夠用的,可能必須要用到NS方程的特殊幾何比如vorticity,這篇文章就是構造了一個類似於NS方程、但不是原先的NS方程的一個反例。

他說,想像一下假如有人異常聰明,純粹用水創造了一臺機器,它並不由杆和齒輪而是由相互作用的水流構成。陶邊說著邊像魔術師般用手在空中比劃出一個形狀。想像一下這臺機器可以copy出另一個更小速度更快的自己,接著這個更小速度更快的又copy出另一個,不斷繼續下去,直到在一個微小的空間達到了無限的速度,從而引發了爆炸。陶笑著說到他並不是提議真的創建這樣一臺機器,這只是一個思想實驗,就像愛因斯坦導出狹義相對論。但是,陶解釋到,如果可以從數學上證明在原則上沒有什麼可以阻止這個奇妙裝置運轉,那麼這便意味著水實際上會爆炸。而且在這個過程中,他也會解決納維-斯託克斯方程的存在性與光滑性的問題。

無論怎麼樣來說,在不斷解決納維-斯託克斯方程的過程中,無數新的數學工具數學方法隨之誕生,引領著數學不斷前進發展。這就是這些難題猜想存在的意義。

文章來源:胖福的小木屋頭條,旨在分享,如有侵權聯繫刪除。

相關焦點

  • 世界級千禧難題— 「納維-斯託克斯方程」
    前面我們曾說到,在CFD流體力學中,最重要的方程就是納維-斯託克斯方程,這並不是一個單一的方程,而是一個方程組,是在眾多科學家和工程師的推動下產生的。納維-斯託克斯方程可描述空間中流體(液體或氣體)的運動,可應用到許多實際應用的領域中。不過對於納維-斯託克斯方程解的理論研究仍然不足,尤其納維-斯託克斯方程的解常會包括湍流。雖然湍流在科學及工程中非常的重要,不過湍流仍是未解決的物理學問題之一。許多納維-斯託克斯方程解的基本性質都尚未被證明。
  • 納維-斯託克斯方程的來源
    大家好,歡迎收看我的百家號小林看天下事,今天小編要給大家的介紹的是納維-斯託克斯方程的來源。納維-斯託克斯方程納維-斯託克斯方程算是複雜得讓人抓狂的那類數學等式,可這三個方程偏偏又是不可或缺的,不但影響著輪船和飛機的製造,而且地球的天氣系統每天如何運行也要靠它們才能模擬。科學家現在採用功能強大的計算機來解這些方程。
  • 困擾人類200年,數學史最難最複雜的公式之一:納維-斯託克斯方程
    相比起黎曼猜想、費馬大定理、哥德巴赫猜想等全球知名的難題,納維-斯託克斯方程的存在感很低,即使在世界千禧年七大難題裡,也很少會有人提及,最重要的原因就是,這個難題實在是不太好理解,尤其對於普通人而言,甚至名列榜首的P/NP問題普通人都可以揣摩到一些,但就是很難理解納維—斯託克斯方程,這也是為什麼民科很少觸及這個問題的原因。
  • 物理學最難的方程之一,解答獎金達100萬美元
    在所有這些公式中,有一組公式在數學上也極具挑戰性,甚至被美國克雷數學研究所選作七個「千禧年大獎難題」之一,與龐加萊猜想、P=NP?等數學界的頂級難題並列,解決該問題的獎金高達100萬美元。而這個物理界最難的公式,就是用於描述流體運動的納維-斯託克斯方程。 最近,一項關於納維-斯託克斯方程的最新研究得以發表。
  • 數學上最複雜的公式——納維斯託克斯方程,到底困難在哪兒?
    1775年,歐拉大神決定換個口味,去研究了一個與力學相關的數學領域——流體力學。他從最基本的無粘性流體的特性開始,仔細研究了無粘性流體的運動與動量變化的關係,於是寫成一本《流體運動的一般原理》。書裡留下了一個無粘性流體力學領域最重要的基礎方程。這本書也是流體力學的開山之作。
  • 烏茲別克數學家聲稱解決千禧年大獎難題
    (原標題:烏茲別克數學家聲稱解決千禧年大獎難題)
  • 電影《天才少女》中出現的數學難題,價值100萬美元,至今無解!
    在去年上映的電影《天才少女》中,講述了一個數學天才——瑪麗的故事。劇情中,主角要解決的數學難題,正是"千禧難題"之一的——N-S方程。(本篇內容不聊電影,只說這個數學難題。)N-S方程全稱「納維-斯託克斯方程」,原始形式在1827年被Navier提出,經過發展,在1845年由Stokes提出最終的形式。該方程描述了粘性不可壓縮流體的運動方式,在物理學上有著極其重要的意義。
  • 網友問:當前數學領域,都還有哪些未解之謎?
    一、黎曼猜想這個可以說是數學中最重要的猜想之一,黎曼猜想研究的是素數分布問題,而素數是一切數字的基礎,假如人類掌握了素數分布的規律,那麼能輕鬆解決很多知名的數學難題。二、N-S方程的解納維-斯託克斯方程是否有解析解?該方程描述的是粘性流體流動問題,本身是一個偏微分方程,其解極其複雜,目前只能在一定範圍內求數值解,至於解析解,是否存在都不知道!
  • 數學最美!改變人類歷史的17大方程-科普,數學,公式,方程式 ——快...
    在筆者看來,宇宙中的通用語言有兩種,一種是數學,另一種是藝術。數學以最簡潔的方式,把複雜的宇宙現象和規律淋漓盡致的展現出來,正所謂宇宙不言,大美如斯!2013年,數學家和科普作家Ian Stewart 發表了他的著作——《改變世界的17個方程》,向大家詮釋了人類歷史上最偉大的17個方程。
  • 最新研究:新的深度學習技術破解偏微分方程的數學難題
    偏微分方程很神奇,非常擅長描述隨時間和空間的變化,因此對於描述種種現象非常有用,可用於描述從行星運動、天氣變化、到隨時空結構變化的所有事物,但是眾所周知,它們很難求解。譬如說,假設嘗試模擬空氣湍流,有一個稱為納維-斯託克斯(Navier-Stokes)的方程,用於描述任何流體的運動。
  • 獲得一百萬美元獎勵到底有多難——看世界七大數學難題
    霍奇猜想的解決黎曼假設、龐加萊猜想、霍奇猜想、貝赫和斯維訥通-戴爾猜想、納維葉―斯託克斯方程、楊―米爾理論、P問題對NP問題被稱為21世紀七大數學難題。2000年5月,美國的克萊數學研究所為每道題懸賞百萬美元求解。
  • 數學第一家族和「伯努利方程」
    1725年,丹尼爾到彼得堡科學院工作,被任命為生理學院士和數學院士時,父親約翰擔心兒子不能勝任,讓自己的得意門生歐拉前去當丹尼爾的助手,是的,你沒有看錯,就是那位數學史上的頂尖大神,前去給丹尼爾當「助理」。
  • 數學手抄報:千禧年大獎難題
    千禧年大獎難題(Millennium Prize Problems), 又稱世界七大數學難題, 是七個由美國克雷數學研究所(Clay Mathematics Institute,CMI) 於2000年5月24日公布的數學猜想。
  • 數學最美!改變人類歷史的17大方程
    在筆者看來,宇宙中的通用語言有兩種,一種是數學,另一種是藝術。數學以最簡潔的方式,把複雜的宇宙現象和規律淋漓盡致的展現出來,正所謂宇宙不言,大美如斯! 2013年,數學家和科普作家Ian Stewart 發表了他的著作——《改變世界的17個方程》,向大家詮釋了人類歷史上最偉大的17個方程。 現在,我們就一起來欣賞一下宇宙最美的語言! 1、勾股定理 勾股定理想必大家再熟悉不過了,這是數學裡最基本的公式之一,描述的是直角三角形三條邊長的關係。
  • 「站在巨人的肩膀上」的斯託克斯
    一、斯託克斯的生平 斯託克斯生於愛爾蘭的一個小鎮,他是六兄妹中最小的一個,從小就非常有教養。他的父親是一個有知識的人,注重拓寬孩子們的知識面,如教他們學習拉丁語等等。 1832年,斯託克斯進入都析林學校學習。
  • 改變人類歷史的17大數學方程
    在筆者看來,宇宙中的通用語言有兩種,一種是數學,另一種是藝術。數學以最簡潔的方式,把複雜的宇宙現象和規律淋漓盡致的展現出來,正所謂宇宙不言,大美如斯!
  • [趣味數學]21世紀七大數學難題
    最近美國麻州的克雷(Clay)數學研究所於2000年5月24日在巴黎法蘭西學院宣布了一件被媒體炒得火熱的大事:對七個「千僖年數學難題」的每一個懸賞一百萬美元。以下是這七個難題。  「千僖難題」之一: P (多項式算法)問題對NP (非多項式算法)問題  「千僖難題」之二: 霍奇(Hodge)猜想  「千僖難題」之三: 龐加萊(Poincare)猜想  「千僖難題」之四:
  • 宇宙最美的語言——改變人類歷史的17大數學方程
    數學能以最簡潔的方式,把複雜的宇宙現象和規律淋漓盡致的展現出來,堪稱宇宙中最美的語言!該公式最直觀的意義就是描述了一個基本的數學規律,更重要的是其引入了一門新的幾何學——撲拓學,並成為對現代物理學意義重大的一個數學分支。