9種常用數據分析方法

2020-12-05 老男孩python學習

數據分析是從數據中提取有價值信息的過程,過程中需要對數據進行各種處理和歸類,只有掌握了正確的數據分類方法和數據處理模式,才能起到事半功倍的效果,以下是數據分析員必備的9種數據分析思維模式:

1. 分類

分類是一種基本的數據分析方式,數據根據其特點,可將數據對象劃分為不同的部分和類型,再進一步分析,能夠進一步挖掘事物的本質。

2. 回歸

回歸是一種運用廣泛的統計分析方法,可以通過規定因變量和自變量來確定變量之間的因果關係,建立回歸模型,並根據實測數據來求解模型的各參數,然後評價回歸模型是否能夠很好的擬合實測數據,如果能夠很好的擬合,則可以根據自變量作進一步預測。

3. 聚類

聚類是根據數據的內在性質將數據分成一些聚合類,每一聚合類中的元素儘可能具有相同的特性,不同聚合類之間的特性差別儘可能大的一種分類方式,其與分類分析不同,所劃分的類是未知的,因此,聚類分析也稱為無指導或無監督的學習。

數據聚類是對於靜態數據分析的一門技術,在許多領域受到廣泛應用,包括機器學習,數據挖掘,模式識別,圖像分析以及生物信息。

4. 相似匹配

相似匹配是通過一定的方法,來計算兩個數據的相似程度,相似程度通常會用一個是百分比來衡量。相似匹配算法被用在很多不同的計算場景,如數據清洗、用戶輸入糾錯、推薦統計、剽竊檢測系統、自動評分系統、網頁搜索和DNA序列匹配等領域。

5. 頻繁項集

頻繁項集是指事例中頻繁出現的項的集合,如啤酒和尿不溼,Apriori算法是一種挖掘關聯規則的頻繁項集算法,其核心思想是通過候選集生成和情節的向下封閉檢測兩個階段來挖掘頻繁項集,目前已被廣泛的應用在商業、網絡安全等領域。

6. 統計描述

統計描述是根據數據的特點,用一定的統計指標和指標體系,表明數據所反饋的信息,是對數據分析的基礎處理工作,主要方法包括:平均指標和變異指標的計算、資料分布形態的圖形表現等。

7. 連結預測

連結預測是一種預測數據之間本應存有的關係的一種方法,連結預測可分為基於節點屬性的預測和基於網絡結構的預測,基於節點之間屬性的連結預測包括分析節點資審的屬性和節點之間屬性的關係等信息,利用節點信息知識集和節點相似度等方法得到節點之間隱藏的關係。與基於節點屬性的連結預測相比,網絡結構數據更容易獲得。複雜網絡領域一個主要的觀點表明,網絡中的個體的特質沒有個體間的關係重要。因此基於網絡結構的連結預測受到越來越多的關注。

8. 數據壓縮

數據壓縮是指在不丟失有用信息的前提下,縮減數據量以減少存儲空間,提高其傳輸、存儲和處理效率,或按照一定的算法對數據進行重新組織,減少數據的冗餘和存儲的空間的一種技術方法。數據壓縮分為有損壓縮和無損壓縮。

9. 因果分析

因果分析法是利用事物發展變化的因果關係來進行預測的方法,運用因果分析法進行市場預測,主要是採用回歸分析方法,除此之外,計算經濟模型和投人產出分析等方法也較為常用。

以上是數據分析員應熟練掌握的9種數據分析思維方法,數據分析員應根據實際情況合理運用不同的方法,才能夠快速精確的挖掘出有價值的信息!

相關焦點

  • 數據分析的幾種常用方法概覽
    數據分析常用方法概覽(之一) 對數據進行分析的方法很多,常用的有對比分析法、分組分析法、結構分析法、交叉分析法、漏鬥圖分析法、矩陣分析法、綜合評價分析法、5W1H分析法、相關分析法、回歸分析法、 聚類分析法、判別分析法、主成分分析法、因子分析法、時間序列、方差分析等等。
  • 數據分析的6種常用方法
    原標題:數據分析的6種常用方法 醫學工作者做完醫學實驗後,少不了要對收集的實驗數據進行數據分析。通常來說,常用的數據分析方法有以下六種:聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析。
  • 五種常用大數據分析方法
    在數據分析中,常用到的分3類:時間對比、空間對比以及標準對比。  時間對比:  最常用的就是同比和環比,通過時間周期的數據對比,了解目前數據水平的高低  同比:某個周期的時段與上一個周期的相同時段比較,如今年的6月比去年的6月,本周的周一比上周的周一等等。
  • SEM優化常用的幾種數據分析方法
    SEM優化工作少不了做分析報表,而數據分析不僅僅是為了發現問題,為解決問題提供參考數據,也是對推廣效果的直觀展現方式,善用工具,能事半功倍地掌握工作,並及時作出調整。簡而言之,數據分析就是為了幫助我們對工作做到心中有數。
  • 數據分析的幾種常用方法概覽(之二)
    數據分析常用方法概覽(之二)上一篇,我們了解了數據分析時常用的對比分析法、分組分析法、結構分析法、交叉分析法、漏鬥圖分析法、矩陣分析法、綜合評價分析法等八種分析方法,今天我們繼續了解下上文提到的另外八種常見數據分析方法。
  • 常用的四種大數據分析方法
    本文主要講述數據挖掘分析領域中,最常用的四種數據分析方法:描述型分析、診斷型分析、預測型分析和指令型分析。簡單地來說,分析可被劃分為4種關鍵方法。下面會詳細介紹這四種方法。1. 描述型分析:發生了什麼?
  • 運營er常用的數據分析方法有哪些?
    這不最近領導找小編談話了,說小編在工作是無用功,應該用科學的數據分析的方法去運營。我.......為了避免重蹈的覆轍,小編決定奮發圖強,去看看到底什麼是數據分析,有哪些好用的數據方法。下面就是小編整理了幾種搜集到的運營er常用的數據分析方法,大家可以先了解一下。01細分分析細分分析是分析的基礎,單一維度下的指標數據的信息價值很低。
  • 常用的數據分析方法及案例講解
    常用的數據分析方法有描述統計、信度分析、相關分析、回歸分析、聚類分析等。本文將結合實際案例,為大家一一講解這些數據分析的方法。如果你想了解如何做數據分析,就接著看下去吧~描述性統計分析是通過圖表或數學方法,對數據資料進行整理、分析,並對數據的分布狀態、數字特徵和隨機變量之間關係進行估計和描述的方法。這也是我們在日常生活最常用的一種數據分析方法,因此這裡就不再用案例展開講解了。2、信度分析信度即可靠性,它是指採用同樣的方法對同一對象重複測量時所得結果的一致性程度。企業在招聘員工時會有一套性格測試題,這裡面就用到了信度分析。
  • 數據分析入門:14種常用的數據分析方法
    分析數據是將收集的數據通過加工、整理和分析、使其轉化為信息,通常用方法有:排列圖排列圖是一種找出影響產品質量主要因素的圖表方法。其結構是由兩個縱坐標和一個橫坐標,若干個直方形和一條折線構成。魚骨圖魚骨圖是一種發現問題「根本原因」的方法,用於質量管理。方法是通過頭腦風暴找出問題的可能原因,並將它們與特性值一起,按相互關聯性整理而成的層次分明、條理清楚,並標出重要因素。
  • 16種常用的數據分析方法-回歸分析
    2 回歸分析 研究自變量與因變量之間關係形式的分析方法,它主要是通過建立因變量y 與影響他的自變量Xi 之間的回歸模型,來預測因變量y 的發展趨勢。
  • SEM常用的4種數據分析方法,你用過幾種?
    有經驗的 SEMer 都知道,盡信數據則不如無數據。數據就躺在哪裡,關鍵在分析之前,你之前要 有清晰的思維邏輯:你為什麼要分析數據?你希望通過數據分析得到什麼?我一般的分析數據邏輯如下:確定分析的目的—>收集數據—>整理數據—>分析數據—>得到一些分析的思路今天主要分享下數據分析的常用方法,
  • SEM常用的這4種數據分析方法,掌握效率翻倍!
    數據就躺在哪裡,關鍵在分析之前,你之前要 有清晰的思維邏輯:你為什麼要分析數據?你希望通過數據分析得到什麼?我一般的分析數據邏輯如下:確定分析的目的—>收集數據—>整理數據—>分析數據—>得到一些分析的思路本篇主要分享下數據分析的常用方法,
  • 論文常用數據分析方法分類總結-4
    論文常用數據分析方法分類總結-2論文常用數據分析方法分類總結-316.平均值和求和也是信息濃縮的常用方法,比如要將多個題項合併成一個變量,可通過求平均值概括成一個題項。當數據不滿足正態,存在極端值時,可用中位數代替平均值。18.
  • 常用數據分析方法:方差分析及實現!
    方差分析是一種常用的數據分析方法,其目的是通過數據分析找出對該事物有顯著影響的因素、各因素之間的交互作用及顯著影響因素的最佳水平等。本文介紹了方差分析的基礎概念,詳細講解了單因素方差分析、雙因素方差分析的原理,並且給出了它們的python實踐代碼。
  • 推薦幾種常見的數據分析方法
    基礎分析方法1.對比分析法概念:根據數據維度的不同特徵,選取兩個或兩個以上重點分析維度,進行重要指標對比,分析其數量關係及形成原因的分析方法,是最基本的分析方法。對比分析的主要參照標準:(1)歷史標準:和歷史水平進行比較,說明其發展水平或增長速度。
  • 論文常用數據分析方法分類總結-2
    上篇文章我們總結了基本描述統計、信度分析、效度分析、差異關係、影響關係五種常見分析方法,下面繼續我們的總結。6. 相關分析匯總相關分析用於研究X和Y的關係情況,X、Y都為定量數據。如果Y有兩個選項時,可使用二元Logit回歸如果Y的選項大於2個時,可使用多分類Logit回歸如果Y為定類數據,且選項有順序大小之分時,可使用有序Logit回歸9.
  • 論文常用數據分析方法分類總結-3
    論文常用數據分析方法分類總結-211.數據分布數據分布-SPSSAU判斷數據分布是選擇正確分析方法的重要前提。正態性:很多分析方法的使用前提都是要求數據服從正態性,比如線性回歸分析、相關分析、方差分析等,可通過正態圖、P-P/Q-Q圖、正態性檢驗查看數據正態性。隨機性:遊程檢驗是一種非參數性統計假設的檢驗方法,可用於分析數據是否為隨機。
  • 數據分析的方法(一)
    至今,數據分析師的行業依然很火熱,但是大部分人還是不清楚數據分析的目的是什麼,分析的步驟、方法都有哪一些。數據分析主要就是為了從海量的數據中提取有用的信息和形成結論,從而對數據加以詳細的研究和概括總結。
  • 統計學最常用的「數據分析方法」清單(二)
    BAYES判別分析法 BAYES判別分析法比FISHER判別分析法更加完善和先進,它不僅能解決多類判別分析,而且分析時考慮了數據的分布狀態,所以一般較多使用。 十、主成分分析 是一種統計方法。
  • 數據分析實用的4種分析方法
    在日常工作中數據分析主要是為了支持業務,而業務很大程度上是圍繞用戶進行的,因而可以從用戶場景出發來具體選擇數據工具。用戶場景主要分成三大類: 第一類是洞察,要去觀察和找到我們用戶當中的一些特點規律。