tensorflow初級必學算子

2021-01-11 IT技術百貨

在之前的文章中介紹過,tensorflow框架的核心是將各式各樣的神經網絡抽象為一個有向無環圖,圖是由tensor以及tensor變換構成;

雖然現在有很多高階API可以讓開發者忽略這層抽象,但對於靈活度要求比較高的算法仍然需要開發者自定義網絡圖,所以建議開發者儘量先學習tf1.x中的基礎概念,這樣才能在深度學習道路上走得更遠;

首先來看定義圖時最常用的算子:

1. 常量定義

tf.constant()

2. 變量的定義

tf.Variable tf.get_variable

前者是調用構造方法創建一個新的對象,並且不能被復用 後者通過設置reuse=tf.AUTO_REUSE,優先看當前scope下面是否有符合要求的變量,有則返回這個值,沒有則創建新的對象; 設置為tf.reuse=True,會拋異常,可能與版本有關係

3. 相同維度的張量,進行對應元素的加減乘除操作

tf.addtf.subtracttf.multiplytf.div以上幾個算子都支持廣播,具體廣播原則後面的文章中介紹

4. 矩陣的點積與轉置

tf.matmultf.transpose

除了以上最基本算子之外,工程實踐中常用的幾個算子如下:

5. 維度變換算子

tf.reshape()

6. 維度增減算子

tf.expand_dimstf.squeeze

7. 生成符合正態分布的tensor

tf.random.normal

8. 某一維度求和

tf.reduce_sum

9. 將python中的列表或者ndarray對象轉為tensor

tf.convert_to_tensor

在定義圖的時候,儘量不要用+、-、*、/等符號,也儘量不要用math或者ndarray包下面的計算函數,而是應該使用tensorflow提供的計算函數,tf提供的函數還是十分全面的,即便某些比較複雜的函數沒有提供,也應該用其提供的基礎函數來實現。

想更進一步了解以上算子的使用DEMO可以關注並私信我;

相關焦點

  • 步履不停:TensorFlow 2.4新功能一覽!
    參數伺服器訓練教程           https://tensorflow.google.cn/tutorials/distribute/parameter_server_training    ClusterCoordinator           https://tensorflow.google.cn/api_docs/python
  • TensorFlow 攜手 NVIDIA,使用 TensorRT 優化 TensorFlow Serving...
    HTTP/REST API at:localhost:8501 …$ curl -o /tmp/resnet/resnet_client.py https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/example/resnet_client.py
  • TensorFlow極速入門
    最後給出了在 tensorflow 中建立一個機器學習模型步驟,並用一個手寫數字識別的例子進行演示。1、tensorflow是什麼?tensorflow 是 google 開源的機器學習工具,在2015年11月其實現正式開源,開源協議Apache 2.0。
  • 深度學習的敲門磚:手把手教你TensorFlow初級入門
    關於TensorFlow的Python和C ++ API的各種函數的詳細文檔,請參見https://www.tensorflow.org/api_docs/index.html 機器學習主要依賴於很多數學公式,本文將對使用TensorFlow進行這類數學運算做一個初步的介紹。
  • TensorFlow2.1正式版上線:最後一次支持Python2,進一步支持TPU
    也就是說,如果使用 pip install tensorflow,則版本默認為是 gpu 版本(原始的 tensorflow-gpu 版本依然存在)。當然,不管有沒有英偉達版本的 GPU,tensorflow 依然能夠運行。如果需要使用 CPU 版本,用戶的安裝命令應該為:pip install tensorflow-cpu。
  • Tensorflow基礎教程15天之創建Tensor
    Tensor是Tensorflow中使用在計算圖中的最基本的數據單位,我們可以聲明Tensor為variable,或者為Tensor提供placeholer。但首先我們必須知道如何創建Tensor。在將Tensor定義為Variable之後,Tensorflow才會將其傳入計算圖。如何操作我們將在這裡介紹創建Tensor的主要方法。
  • TensorFlow 中文資源全集,學習路徑推薦
    https://gitee.com/fendouai/Awesome-TensorFlow-Chinese很多內容下面這個英文項目:Inspired by https://github.com/jtoy/awesome-tensorflow官方網站官網:https://www.tensorflow.org/中文:https://tensorflow.google.cn
  • 終於來了,TensorFlow 新增官方 Windows 支持
    現在你可以使用命令 C:\> pip install tensorflow 安裝 TensorFlow 了。GPU 支持的命令:C:\> pip install tensorflow-gpu有關 TensorFlow Windows 支持的更多細節請閱讀 r0.12 的版本注釋。
  • 玩轉TensorFlow?你需要知道這30功能
    地址是:tensorflow.org/tfx/?網址是:https://www.tensorflow.org/tfx/transform/?網址是:https://www.tensorflow.org/serving/?
  • 在Windows中安裝Tensorflow和Kears深度學習框架
    在命令提示符窗口輸入下列命令: 建立Tensorflow Anaconda虛擬環境 conda create --name tensorflow python=3.5 anaconda 執行後屏界面顯示如圖3-9所示。
  • 5個簡單的步驟掌握Tensorflow的Tensor
    在這篇文章中,我們將深入研究Tensorflow Tensor的細節。我們將在以下五個簡單步驟中介紹與Tensorflow的Tensor中相關的所有主題:第一步:張量的定義→什麼是張量?我們經常將NumPy與TensorFlow一起使用,因此我們還可以使用以下行導入NumPy:import tensorflow as tfimport numpy as np張量的創建:創建張量對象有幾種方法可以創建tf.Tensor對象。讓我們從幾個例子開始。
  • 深度解讀TensorFlow,了解它的最新發展!
    Tensorboard是tensorflow內置的一個可視化工具,它通過將tensorflow程序輸出的日誌文件的信息可視化,使得tensorflow程序的理解、調試和優化更加簡單高效。Tensorboard的可視化依賴於tensorflow程序運行輸出的日誌文件,因而tensorboard和tensorflow程序在不同的進程中運行。
  • 最簡單的深度學習TensorFlow應用舉例!
    小編我的電腦很一般,沒有32G內存,也沒有1080,就windows上直接裝了23333windows+python 3.6+pycharm+tensorflow cpu話不多說,直接線性回歸,上圖。代碼截圖#接下來貼代碼#辰星樹洞import numpy as np #這是Python的一種開源的數值計算擴展,非常強大import tensorflow
  • Tensorflow 全網最全學習資料匯總之Tensorflow 的入門與安裝【2】
    《TensorFlow學習筆記1:入門》連結:http://www.jeyzhang.com/tensorflow-learning-notes.html本文與上一篇的行文思路基本一致,首先概括了TensorFlow的特性,然後介紹了graph、session、variable 等基本概念的含義,以具體代碼的形式針對每個概念給出了進一步的解釋
  • 基於RTX2060構建TensorFlow-gpu(keras)學習平臺
    開始菜單運行anaconda navigator檢查是否安裝了notebook(默認有安裝)三、安裝tensorflow/keras在激活的環境中安裝:1. 如果機器上有gpu,則安裝gpu版本,沒有GPU就安裝cpu版。
  • 如何使用TensorFlow Hub的ESRGAN模型來在安卓app中生成超分圖片
    file_path=org%2Ftensorflow%2Ftensorflow-lite%2F2.3.0%2Ftensorflow-lite-2.3.0.aar" dest "${project.rootDir}/libraries/tensorflow-lite-2.3.0.aar" overwrite false retries 5 } } task downloadTFLiteGPUDelegateAARFile
  • TensorFlow極簡教程:創建、保存和恢復機器學習模型
    繼續之前,也可以閱讀這個 Tensorflow 小入門:https://blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3#.wxlmweb8h你有必要了解這些信息,因為了解如何保存不同級別的代碼是非常重要的,這可以避免混亂無序。
  • 機器學習中的embedding原理及tensorflow 相關API的理解
    # 概述本文主要講解tensorflow中涉及embedding的API。之前看了一些文章,寫的雲山霧繞,花了好長時間才搞懂,太笨了。embedding 算法主要用於處理稀疏特徵,應用於NLP、推薦、廣告等領域。所以word2vec 只是embbeding 思想的一個應用,而不是全部。
  • 分享TensorFlow Lite應用案例
    不支持的 op 主要集中有兩大類情況:   包括控制流 (control flow) 的 op   相對於 TF mobile,TF Lite 的部分 op 只支持最簡單的 case   目前的一個好的消息就是 TensorFlow 項目組一直在持續的推進對 RNN 系列的支持。   3.
  • TensorFlow 資源大全中文版
    (點擊上方藍字,快速關注我們)譯文:伯樂在線專欄作者 - Yalye英文:jtoy如有好文章投稿