光纖光柵傳感器的基本原理及實際應用

2020-11-22 電子發燒友

一、 前言

1978年加拿大渥太華通信研究中心的K.O.Hill等人首次在摻鍺石英光纖中發現光纖的光敏效應,並採用駐波寫入法製成世界上第一根光纖光柵。1989年,美國聯合技術研究中心的G.Meltz等人實現了光纖Bragg光柵(FBG)的UV雷射側面寫入技術,使光纖光柵的製作技術實現了突破性進展。隨著光纖光柵製造技術的不斷完善,其應用的成果日益增多,從光纖通信、光纖傳感到光計算和光信息處理的整個領域都將由於光纖光柵的實用化而發生革命性的變化,光纖光柵技術是光纖技術中繼摻鉺光纖放大器(EDFA)技術之後的又一重大技術突破。

光纖光柵是利用光纖中的光敏性製成的。所謂光纖中的光敏性是指雷射通過摻雜光纖時,光纖的折射率將隨光強的空間分布發生相應變化的特性。而在纖芯內形成的空間相位光柵,其作用的實質就是在纖芯內形成一個窄帶的(透射或反射)濾波器或反射鏡。利用這一特性可製造出許多性能獨特的光纖器件。這些器件具有反射帶寬範圍大、附加損耗小、體積小,易與光纖耦合,可與其它光器件兼容成一體,不受環境塵埃影響等一系列優異性能。光纖光柵的種類很多,主要分兩大類:一是Bragg光柵(也稱為反射或短周期光柵);二是透射光柵(也稱為長周期光柵)。光纖光柵從結構上可分為周期性結構和非周期性結構,從功能上還可分為濾波型光柵和色散補償型光柵,色散補償型光柵是非周期光柵,又稱為啁啾光柵(chirp光柵)。目前光纖光柵的應用主要集中在光纖通信領域和光纖傳感器領域。

在光纖傳感器領域,光纖光柵傳感器的應用前景十分廣闊。由於光纖光柵傳感器具有抗電磁幹擾、尺寸小(標準裸光纖為125um)、重量輕、耐溫性好(工作溫度上限可達400℃-600℃)、復用能力強、傳輸距離遠(傳感器到解調端可達幾公裡)、耐腐蝕、高靈敏度、無源器件、易形變等優點,早在1988年就成功地在航空、航天領域中作為有效的無損檢測技術,同時光纖光柵傳感器還可應用於化學醫藥、材料工業、水利電力、船舶、煤礦等各個領域,還在土木工程領域(如建築物、橋梁、水壩、管線、隧道、容器、高速公路、機場跑道等)的混凝土組件和結構中,測定其結構的完整性和內部應變狀態,從而建立靈巧結構,並進一步實現智能建築。


 

二、 光纖光柵傳感器的工作原理

我們知道,光柵的Bragg波長λB由下式決定:λB=2nΛ (1)

式中,n為芯模有效折射率,Λ為光柵周期。當光纖光柵所處環境的溫度、應力、應變或其它物理量發生變化時,光柵的周期或纖芯折射率將發生變化,從而使反射光的波長發生變化,通過測量物理量變化前後反射光波長的變化,就可以獲得待測物理量的變化情況。如利用磁場誘導的左右旋極化波的折射率變化不同,可實現對磁場的直接測量。此外,通過特定的技術,可實現對應力和溫度的分別測量,也可同時測量。通過在光柵上塗敷特定的功能材料(如壓電材料),還可實現對電場等物理量的間接測量。

1、 啁啾光纖光柵傳感器的工作原理上面介紹的光柵傳感器系統,光柵的幾何結構是均勻的,對單參數的定點測量很有效,但在需要同時測量應變和溫度或者測量應變或溫度沿光柵長度的分布時,就顯得力不從心。一種較好的方法就是採用啁啾光纖光柵傳感器。

啁啾光纖光柵由於其優異的色散補償能力而應用在高比特遠程通信系統中。與光纖Bragg光柵傳感器的工作原理基本相同,在外界物理量的作用下啁啾光纖光柵除了△λB的變化外,還會引起光譜的展寬。這種傳感器在應變和溫度均存在的場合是非常有用的,啁啾光纖光柵由於應變的影響導致了反射信號的拓寬和峰值波長的位移,而溫度的變化則由於折射率的溫度依賴性(dn/dT),僅影響重心的位置。通過同時測量光譜位移和展寬,就可以同時測量應變和溫度。

2、 長周期光纖光柵(LPG)傳感器的工作原理

長周期光纖光柵(LPG)的周期一般認為有數百微米,LPG在特定的波長上把纖芯的光耦合進包層:λi=(n0-niclad)。Λ。式中,n0為纖芯的折射率,niclad為i階軸對稱包層模的有效折射率。光在包層中將由於包層/空氣界面的損耗而迅速衰減,留下一串損耗帶。一個獨立的LPG可能在一個很寬的波長範圍上有許多的共振,LPG共振的中心波長主要取決於芯和包層的折射率差,由應變、溫度或外部折射率變化而產生的任何變化都能在共振中產生大的波長位移,通過檢測△λi,就可獲得外界物理量變化的信息。LPG在給定波長上的共振帶的響應通常有不同的幅度,因而LPG適用於多參數傳感器。

三、 光纖光柵傳感器的應用

1、在地球動力學中的應用

在地震檢測等地球動力學領域中,地表驟變等現象的原理及其危險性的估定和預測是非常複雜的,而火山區的應力和溫度變化是目前為止能夠揭示火山活動性及其關鍵活動範圍演變的最有效手段心。光纖光柵傳感器在這一領域中的應用主要是在巖石變形、垂直震波的檢測以及作為地形檢波器和光學地震儀使用等方面。活動區的應變通常包含靜態和動態兩種,靜態應變(包括由火山產生的靜態變形等)一般都定位於與地質變形源很近的距離;而以震源的震波為代表的動態應變則能夠在與震源較遠的地球周邊環境中檢測到。為了得到相當準確的震源或火山源的位置,更好地描述源區的幾何形狀和演變情況,需要使用密集排列的應力-應變測量儀。光纖光柵傳感器是能實現遠距離和密集排列復用傳感的寬帶、高網絡化傳感器,符合地震檢測等的要求,因此它在地球動力學領域中無疑具有較大的潛在用途。有報導指出,光纖光柵傳感器已成功檢測了頻率為0.1-2Hz,大小為10-9ε(應變)的巖石和地表動態應變。

2、在太空飛行器及船舶中的應用

先進的複合材料抗疲勞、抗腐蝕性能較好,而且可以減輕船體或太空飛行器的重量,對於快速航運或飛行具有重要意義,因此複合材料越來越多地被用於製造航空航海工具(如飛機的機翼)。

為全面衡量船體的狀況,需要了解其不同部位的變形力矩、剪切壓力、甲板所受的抨擊力,對於普通船體大約需要100個傳感器,因此波長復用能力極強的光纖光柵傳感器最適合於船體檢測。光纖光柵傳感系統可測量船體的彎曲應力,而且可測量海浪對溼甲板的抨擊力。具有幹涉探測性能的16路光纖光柵復用系統成功實現了在帶寬為5kHz範圍內、解析度小於10nε/(Hz)1/2的動態應變測量。

另外,為了監測一架飛行器的應變、溫度、振動、起落駕駛狀態、超聲波場和加速度情況,通常需要100多個傳感器,故傳感器的重量要儘量輕,尺寸儘量小,因此最靈巧的光纖光柵傳感器是最好的選擇。另外,實際上飛機的複合材料中存在兩個方向的應變,嵌人材料中的光纖光柵傳感器是實現多點多軸向應變和溫度測量的理想智能元件。

3、在民用工程結構中的應用

民用工程的結構監測是光纖光柵傳感器最活躍的領域。力學參量的測量對於橋梁、礦井、隧道、大壩、建築物等的維護和狀況監測是非常重要的。通過測量上述結構的應變分布,可以預知結構局部的載荷及狀況。光纖光柵傳感器可以貼在結構的表面或預先埋入結構中,對結構同時進行衝擊檢測、形狀控制和振動阻尼檢測等,以監視結構的缺陷情況。另外,多個光纖光柵傳感器可以串接成一個傳感網絡,對結構進行準分布式檢測,可以用計算機對傳感信號進行遠程控制。

光纖光柵傳感器可以檢測的建築結構之一為橋梁。應用時,一組光纖光柵被粘於橋梁複合筋的表面,或在梁的表面開一個小凹槽,使光柵的裸纖芯部分嵌進凹槽得以保護。如果需要更加完善的保護,則最好是在建造橋時把光柵埋進複合筋,由於需要修正溫度效應引起的應變,可使用應力和溫度分開的傳感臂,並在每一個梁上均安裝這兩個臂。

兩個具有相同中心波長的光纖光柵代替法布裡-珀羅幹涉儀的反射鏡,形成全光纖法布裡-珀羅幹涉儀(FFH),利用低相干性使幹涉的相位噪聲最小化,這一方法實現了高靈敏度的動態應變測量。用FFPI結合另外兩個FBG,其中一個光柵用來測應變,另一個被保護起來,免受應力影響,以測量和修正溫度效應,所以FFP~FBG實現了同時測量三個量:溫度、靜態應變、瞬時動態應變。這種方法兼有幹涉儀的相干性和光纖布拉格光柵傳感器的優點。已在5mε的測量範圍內,實現了小於1με的靜態應變測量精度、0.1℃的溫度靈敏度和小於1nε/(Hz)1/2的動態應變靈敏度。

4、在電力工業中的應用

光纖光柵傳感器因不受電磁場幹擾和可實現長距離低損耗傳輸,從而成為電力工業應用的理想選擇。電線的載重量、變壓器繞線的溫度、大電流等都可利用光纖光柵傳感器測量。

在電力工業中,電流轉換器可把電流變化轉化為電壓變化,電壓變化使壓電陶瓷(PZT)產生形變,而利用貼於PZT上的光纖光柵的波長漂移,很容易得知其形變,從而得知電流強度。這是一種較為廉價的方法,並且不需要複雜的電隔離。另外,由大雪等對電線施加的過量的壓力可能會引發危險事件,因此在線檢測電線壓力非常重要,特別是對於那些不易檢測到的山區電線。光纖光柵傳感器可測電線的載重量,其原理為把載重量的變化轉化為緊貼電線的金屬板所受應力的變化,這一應力變化被粘於金屬板上的光纖光柵傳感器探測到。這是利用光纖光柵傳感器實現遠距離惡劣環境下測量的實例,在這種情況下,相鄰光柵的間距較大,故不需快速調製和解調。

5、在醫學中的應用

醫學中用的傳感器多為電子傳感器,它對許多內科手術是不適用的,尤其是在高微波(輻射)頻率、超聲波場或雷射輻射的過高熱治療中,由於電子傳感器中的金屬導體很容易受電流、電壓等電磁場的幹擾而引起傳感頭或腫瘤周圍的熱效應,這樣會導致錯誤讀數。為測定高頻輻射或微波場的安全性,需用超聲波傳感器檢測一系列醫療(包括超聲手術、過高熱治療、碎結石手術等)中所用的超聲診斷儀器的性能。近年來,使用高頻電流、微波輻射和雷射進行熱療以代替外科手術越來越受到醫學界的關注,而且傳感器的小尺寸在醫學應用中是非常重要的,因為小的尺寸對人體組織的傷害較小,光纖光柵傳感器是目前為止能夠做到的最小的傳感器。光纖光柵傳感器能夠通過最小限度的侵害方式測量人體組織內部的溫度、壓力、聲波場的精確局部信息。到目前為止,光纖光柵傳感系統已經成功地檢測了病變組織的溫度和超聲波場,在30℃-60℃的範圍內,獲得了解析度為0.1℃和精確度為±0.2℃的測量結果,超聲場的測量解析度為10-3atm/Hz1/2,這為研究病變組織提供了有用的信息。

光纖光柵傳感器還可用來測量心臟的效率。在這種方法中,醫生把嵌有光纖光柵的熱稀釋導管插入病人心臟的右心房,並注射人一種冷溶液,可測量肺動脈血液的溫度,結合脈功率就可知道心臟的血液輸出量,這對於心臟監測是非常重要的。

6、在化學傳感中的應用

光纖光柵傳感器可用於化學傳感,因為光柵的中心波長隨折射率的變化而變化,而光柵間倏失波的相互作用以及環境中的化學物質的濃度變化都會引起折射率的變化。

長周期光柵(long period fiber grating,LPFG)與布拉格光纖光柵一樣,也是由光纖軸向上產生周期性的折射率調製而形成,其周期一般大於100μm.它的耦合機理是:向前傳輸的纖芯基模被耦合入幾個特定波長的向前傳輸的包層模,包層模很快損失掉,所以LPFG基本上沒有後向反射,在其透射譜中有幾個特定波長的吸收峰。LPFG對光纖包層材料折射率的變化比上述的光纖布拉格光柵更為敏感,包層材料折射率的任何變化都會改變傳輸光譜的特性,使吸收峰發生改變,所以長周期光柵折射率測量系統的解析度可實現10-7的靈敏度。目前已經用長周期光柵測出了許多化學物質的濃度,包括蔗糖、乙醇、己醇、十六烷、CaCl2、NaCl等,原則上,任何具有吸收峰譜並且其折射率在1.3和1.45之間的化學物質都可用長周期光柵進行探測。

四、結束語

除上述應用外,光纖光柵傳感器還在其他領域得到了應用,並且在許多方面的性能都比傳統的機電類傳感器更穩定、更可靠、更準確。光纖光柵傳感器可以用於應力、應變或溫度等物理量的傳感測量,具有較高的靈敏度和測量範圍。在光纖若干個部位寫入不同柵距的光纖光柵,就可以同時測定若干部位相應物理量及其變化,實現準分布式光纖傳感。總之,光纖光柵傳感器的應用是一個方興未艾的領域,有著非常廣闊的發展前景。

目前對光纖光柵傳感器的研究方向主要有三個方面:一是對傳感器本身及能進行橫向應變感測和高靈敏度、高解析度、且能同時感測應變和溫度變化的傳感器研究;二是對光柵反射信號或透射信號分析和測試系統的研究,目標是開發低成本、小型化、可靠且靈敏的探測技術;三是光纖光柵傳感器的實際應用研究,包括封裝技術、溫度補償技術、傳感器網絡技術。

目前限制光纖光柵傳感器應用的最主要障礙是傳感信號的解調,正在研究的解調方法很多,但能夠實際應用的解調產品並不多,而且價格較高。其次,光纖光柵傳感器應用中的其他問題也非常重要,如:1、由於光源帶寬有限,而應用中一般要求光柵的反射譜不能重疊,因此可復用光柵的數目受到限制;2、如何實現在複合材料中同時測量多軸向的應變,以再現被測體的多軸向應變形貌;3、如何實現大範圍、高精度、快速實時測量;4、如何正確地分辨光柵波長變化是由溫度變化引起的還是由應力產生的應變引起的等。有效地解決上述問題對於實現廉價、穩定、高解析度、大測量範圍、多光柵復用的傳感系統具有重要意義,這些都有待發展。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • 光纖光柵傳感器的原理及應用
    由於光纖光柵具有高靈敏度、低損耗、易製作、性能穩定可靠、易與系統及其它光纖器件連接等優點,因而在光通信、光纖傳感等領域得到了廣泛應用。為此。本文從光纖布拉格光柵、長周期光纖光柵等光纖光柵的原理出發,綜述了光纖布拉格光柵對溫度、應變同時測量技術的應用。
  • 解析光纖光柵傳感器的原理及其應用
    由於光纖光柵具有高靈敏度、低損耗、易製作、性能穩定可靠、易與系統及其它光纖器件連接等優點,因而在光通信、光纖傳感等領域得到了廣泛應用。為此。本文從光纖布拉格光柵、長周期光纖光柵等光纖光柵的原理出發,綜述了光纖布拉格光柵對溫度、應變同時測量技術的應用。
  • 光纖光柵傳感器原理內容詳解
    提出光纖光柵傳感器在實際應用中所面臨的主要技術難題,分析現有的解決方案,討論光纖光柵傳感器在進一步實用化中需要解決的難題及其未來的發展趨勢。   隨著經濟的發展,我國基礎設施建設的規模不斷加大,新建的高樓、道路、橋梁、大壩幾乎遍地開花。對於這些建築物健康狀況的傳感、測控成為一項重要課題。
  • 光纖光柵傳感器應用技術研究
    提出光纖光柵傳感器在實際應用中所面臨的主要技術難題,分析現有的解決方案,討論光纖光柵傳感器在進一步實用化中需要解決的難題及其未來的發展趨勢。因此,光纖光柵傳感器具有推動光纖光柵傳感器進入前沿發展的潛力。 我國對光纖光柵傳感器的研究相對晚一些, 目前我國的光纖傳感器的產業化和大規模推廣應用方面還遠不能滿足國名經濟發展的需求。
  • 光纖光柵傳感器技術及其應用
    二.光纖光柵傳感器的工作原理2.1 布拉格光纖光柵傳感器工作原理我們知道,光柵的Bragg波長λB由下式決定:λB=2nΛ式中,n為芯模有效折射率,Λ為光柵周期。啁啾光纖光柵由於其優異的色散補償能力而應用在高比特遠程通信系統中。與光纖Bragg光柵傳感器的工作原理基本相同,在外界物理量的作用下啁啾光纖光柵除了△λB的變化外,還會引起光譜的展寬。這種傳感器在應變和溫度均存在的場合是非常有用的,啁啾光纖光柵由於應變的影響導致了反射信號的拓寬和峰值波長的位移,而溫度的變化則由於折射率的溫度依賴性(dn/dT),僅影響重心的位置。
  • 光纖光柵傳感器技術及其應用分析探討
    1、啁啾光纖光柵傳感器的工作原理上面介紹的光柵傳感器系統,光柵的幾何結構是均勻的,對單參數的定點測量很有效,但在需要同時測量應變和溫度或者測量應變或溫度沿光柵長度的分布時,就顯得力不從心。一種較好的方法就是採用啁啾光纖光柵傳感器。
  • 光纖光柵傳感器在「神經系統」中的應用
    從結構內部對信號的監測為傳統的傳感技術提供了許多實際的優勢。然而,一旦傳感器密封或系統部署,這一過程的好處,只有當測量系統是足夠強大,以忍受多年的惡劣環境。曾經嚴格意義上是科幻小說的領域,如今光纖傳感技術使得這成為可能。基於光纖布拉格光柵(FBG)的應變/振動和溫度光纖傳感器為傳統的電傳感器技術提供了重要的優勢。
  • 光柵傳感器的結構原理及應用
    光柵式傳感器指採用光柵疊柵條紋原理測量位移的傳感器。光柵是由大量等寬等間距的平行狹縫構成的光學器件。啁啾光纖光柵傳感器與光纖Bragg光柵傳感器的工作原理基本相同,在外界物理量的作用下啁啾光纖光柵除了△λB的變化外
  • 光纖光柵傳感器在面板壩工程安全監測中的應用
    本文對光纖Bragg光柵的溫度/應變傳感特性進行分析和試驗研究;探索其布設工藝以及在大壩施工過程、長期應變監測中的技術。 2.光纖光柵應變傳感特性 光纖Bragg光柵傳感技術是通過對在光纖內部寫入的光柵反射或透射波長光譜的檢測,實現被測結構的應變和溫度量值的絕對測量,其傳感原理如圖1所示。
  • 光纖光柵應力傳感器工作原理
    光纖光柵中折射率分布的周期性結構,導致某一特定波長光的反射,從而形成光纖光柵的反射譜。光纖光柵應力傳感器通常是將光纖光柵附著在某一彈性體上,同時進行保護封裝。  其工作原理如圖1所示:  圖1給出了光纖光柵應力傳感器
  • 低頻光纖光柵加速度傳感器
    之間.對這些低頻振動的監測常採用磁電式速度傳感器來拾取信號.但在強電磁場環境中,磁電式振動傳感器難以克服電磁場的幹擾影響,因而其應用也受到了限制.光纖光柵加速度傳感器是利用光纖光柵的應變傳感機理來實現加速度的測量,並用光的波長變化測量加速度值,用光纖來傳輸傳感信號,集測量、傳輸於一體,因而具有強抗電磁幹擾能力.
  • 北諾毛細光纖光柵傳感器基本原理之一,波的反射與疊加
    在上一篇文章《毛細無縫鋼管光纖光柵傳感器》中,我們給出了毛細無縫鋼管光纖光柵傳感器的定義。然後,我們也介紹了北京大成永盛科技有限公司是一家專業的光纖光柵傳感器生產廠家,所生產的北諾毛細系列無縫鋼管光纖光柵傳感器由於採用了更新的材料和結構從而極具特色。
  • 光纖溫度傳感器原理及應用
    光纖溫度傳感器原理光纖溫度傳感器是一種傳感裝置,利用部分物質吸收的光譜隨溫度變化而變化的原理,分析光纖傳輸的光譜了解實時溫度,主要材料有光纖、光譜分析儀、透明晶體等,分為分布式、光纖螢光溫度傳感器。光纖溫度傳感器,是一類利用在光線在光線中傳輸時,光的振幅、相位、頻率、偏振態等隨光纖溫度變化而變化的原理製作的傳感器。
  • 光柵傳感器的應用_光柵傳感器選型指南
    光柵傳感器的應用   由於光柵傳感器測量精度高、動態測量範圍廣、可進行無接觸測量、易實現系統的自動化和數位化,因而在機械工業中得到了廣泛的應用。   光柵式傳感器在航空太空飛行器及船舶中的應用   先進的複合材料抗疲勞、抗腐蝕性能較好,而且可以減輕船體或太空飛行器的重量,對於快速航運或飛行具有重要意義,因此複合材料越來越多地被用於製造航空航海工具(如飛機的機翼)。   光柵式傳感器在民用工程結構中的應用   民用工程的結構監測是光纖光柵傳感器最活躍的領域。
  • 光纖光柵傳感器相比一般傳感器具有哪些優點
    光纖傳感器是70年代起伴隨著光纖通信技術的飛速發展而發展起來的一種新型的傳感器,經過30多年的不斷研究發展已經取得了很大的進步,各種各樣種類繁多的光纖傳感器被開發出來並應用到實際生活當中。 自1970年第一根光纖被製作出來應用到實際工程當中以來,檢測振動、壓力、加速度、溫度等待測量的光纖傳感器相繼被開發出來。
  • 光纖傳感器與光電傳感器的原理、區別
    打開APP 光纖傳感器與光電傳感器的原理、區別 嘉準傳感器 發表於 2021-01-05 17:47:17 光纖傳感器和光電傳感器作為兩種典型的傳感器
  • 光柵傳感器的應用和選型指南
    光柵傳感器由標尺光柵、指示光柵、光路系統和測量系統四部分組成。標尺光柵相對於指示光柵移動時,便形成大致按正弦規律分布的明暗相間的疊柵條紋。這些條紋以光柵的相對運動速度移動,並直接照射到光電元件上,在它們的輸出端得到一串電脈衝,通過放大、整形、辨向和計數系統產生數位訊號輸出,直接顯示被測的位移量。光柵傳感器的應用由於光柵傳感器測量精度高、動態測量範圍廣、可進行無接觸測量、易實現系統的自動化和數位化,因而在機械工業中得到了廣泛的應用。
  • 【RT FORUM專欄】基於光纖光柵原理的地鐵道岔監測系統設計
    摘 要 :針對地鐵道岔監測問題,提出一種基於光纖光柵原理的監測系統。對目前的監測手段進行比較,對基於光纖光柵應變傳感器的監測系統進行闡述,對轉轍機動作杆施加壓力,系統測試精度達土0.1 kN,有利保障地鐵運行的可靠性和安全性。軌道交通行車的關鍵基礎設備—— 道岔,其運用狀態與行車安全暢通直接相關。
  • 橋梁健康監測——光纖光柵技術在橋梁檢測中的應用
    、光纖傳感等光電子處理領域有著廣泛應用前景的基礎性光纖器件。光纖光柵是以光纖為基本材料,通過雷射加工形成的一種特殊器件,能夠對滿足布拉格條件的光進行反射,在實際工程中,要檢測的點如果受到應變、溫度、壓力、位移和加速度等變化,波長就會改變,這樣通過檢測波長的變化就可以檢測出此點的應力狀況。進而可以判斷出被檢測物體的安全狀況。
  • 深度解讀光纖傳感器
    傳光型光纖傳感器的基本原理是待測物理量引起光纖中的傳輸光光強I變化,通過光強I的檢測實現對待測物理量的測量。 強度調製的特點是簡單、可靠、經濟。 光纖Sagnac幹涉儀的基本原理是在由同一光纖繞成的光纖圈中沿反方向前進的兩光波,在外界因素作用下產生不同的相移。然後,通過幹涉效應進行檢測。其最典型的應用就是轉動傳感,及光纖陀螺。由於它沒有活動部件,沒有非線性效應和低轉速時雷射陀螺的閉鎖區,因而非常有希望製成高性能低成本的器件。 下圖是光纖Sagnac幹涉儀的原理圖。