由於電池安全是非常複雜,且該話題相對比較敏感,小賤只能東一榔頭西一棒子,粗略地呈現一些實驗結果,大家結合自己的理解去做判斷。鑑於企業數據嚴格保密,不能展示實際工作中測得的結果,只好結合文獻中的結果來進行介紹。為了簡便起見,根據行業習慣將磷酸鐵鋰LiFePO4記為LFP,將三元層狀材料LiNixCoyMnzO2 (x+y+z =1)記為NCM (註:由於目前國內三元主流是NCM,因此本文暫不討論NCA)。
1.電池安全的複雜性
圖1 鋰離子電池熱失控原因[1]
圖2 不同測試條件下電池放熱量估值[2]
2. LFP和NCM基本信息
圖3 LFP晶體結構[4]
LFP分子中鋰為正一價,中心金屬鐵為正二價,磷酸根為負三價,中心金屬鐵與周圍的六個氧形成FeO6八面體,而磷酸根中的磷與四個氧原子形成以磷為中心共邊的PO4四面體,藉由鐵的FeO6八面體和磷的PO4四面體所構成的空間骨架,共同交替形成Z字型的鏈狀結構,鋰離子則佔據共邊的空間骨架中所構成的八面體位置(圖3)。該結構在結晶學的對稱分類上屬於斜方晶系中的Pmnb空間群,單位晶格常數為a=6.008 Å,b=10.334 Å,c=4.693 Å,單位晶格的體積為291.4 Å3。由於結構中的磷酸基對整個材料的框架具有穩定的作用,使得材料本身具有良好的熱穩定性和循環性能。(2)NCM
圖4 NCM結構圖和LiCoO2/LiMnO2/LiNiO2二元相圖[5-6]
圖5 NCM523、NCM622、NCM811和NCA理化性質[7]
2. LFP和NCM材料熱穩定性對比
圖6 NCM433、NCM 532、NCM622和NCM811 TR-XRD及釋氧對比[8]
圖7 LFP TG-MS曲線[10],加熱速率10 ℃/min
3.全電池熱穩定性
圖8 不同體系電池不同溫度下放熱曲線[11](註:電池容量、測試條件等數據未具體給出)
如前所示,電池散熱量同測試方法和測試條件有關,因此在分析和表述時需要格外謹慎。如圖8所示,LFP、NCM111、NCA和LiCoO2四種體系電池中LFP有著最好的熱穩定性和最低的放熱速率。圖8雖然並未給出NCM811的數據,但其熱穩定性只會比NCM111和LFP更差。
圖9 LFP、NCM和NCA三種體系電池的ARC測試結果[12]
圖10 LFP和NCA電池ARC結果對比[13]
圖11 LFP和NCA電池針刺實驗結果對比[13],其中上方表格給出的是各不同電池的具體信息。
4. 感想
(1)從材料本身角度看,LFP較NCM和NCA顯然熱穩定性更好;
(2)對於眾多企業急於推出NCM811的問題,很多專家都發表了觀點並激烈爭論過。作為一名不起眼的工程師,小賤一直在想:NCM811安全特性和危害程度都了解清楚了嗎?防範措施都到位了嗎?
(3)一直很好奇,國內那麼多電池企業,有多少企業員工在用裝了自家電池電動車?下次偷偷去統計下,嘿嘿!
參考文獻:
[1] Fredrik Larsson, Bengt-Erik Mellander. Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells. Journal of The Electrochemical Society, 2014, 161(10): A1611-A1617.
[2] Vehicle Technology Office. U. S. Department of Energy. Batteries, 2017 Annual Progress Report.
[3] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough. Phospho‐olivines as Positive Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 1997, 144(4):1188-1194.
[4]https://crystallography365.wordpress.com/2014/04/29/lifepo4-the-unexpected-battery-success-story/
[5] Patrick Roziera, Jean Marie Tarascon. Review-Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges. Journal of The Electrochemical Society, 2015, 162 (14):A2490-A2499.
[6] Florian Schipper, Evan M. Erickson, Christoph Erk, Ji-Yong Shin, Frederick Francois Chesneau, Doron Aurbacha. Review-Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes I. Nickel-Rich, LiNixCoyMnzO2. Journal of The Electrochemical Society, 2017, 164(1):A6220-A6228.
[7] Junhyeok Kim, Hyomyung Lee, Hyungyeon Cha, Moonsu Yoon, Minjoon Park, Jaephil Cho. Prospect and Reality of Ni-Rich Cathode for Commercialization. Adv. Energy Mater., 2018, 8, 1702028.
[8] Seong-Min Bak, Enyuan Hu, Yongning Zhou, Xiqian Yu, Sanjaya D. Senanayake, Sung-Jin Cho, Kwang-Bum Kim, Kyung Yoon Chung, Xiao-Qing Yang, Kyung-Wan Nam. Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy. ACS Appl. Mater. Interfaces, 2014, 6 (24), pp 22594–22601.
[9] Johannes Wandt, Anna T.S. Freiberg, Alexander Ogrodnik, Hubert A. Gasteiger. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Materials Today, 2018, 21(8):825-833.
[10] Surendra K. Martha, Ortal Haik, Ella Zinigrad, Ivan Exnar, Thierry Drezen, James H. Miners, Doron Aurbach. On the Thermal Stability of Olivine Cathode Materials for Lithium-Ion Batteries. Journal of The Electrochemical Society, 158 (10) A1115-A1122 (2011).
[11] Christopher J. Orendorff. Battery Safety R&D at Sandia National Laboratories. 2014.
[12] Martin Brand, Simon Gläser, Jan Geder, Stefan Menacher, Sebastian Obpacher, Andreas Jossen, Daniel Quinger. Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology. World Electric Vehicle Journal, 2013, 6: 572-580.
[13] Alexis Perea, Andrea Paolella, Joël Dubé, Dominique Champagne, Alain Mauger,Karim Zaghi. State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells. Journal of Power Sources 399,2018: 392–397.
歡迎關注本公共號。
轉載請後臺聯繫,轉載請註明來自於鋰電前沿。