頻譜分析儀和信號分析儀的區別

2021-01-10 電子產品世界
在實驗室和車間最常用的信號測試儀器是電子示波器。人的思維對時間概念比較敏感,每時每刻都與時域事件發生聯繫,但是信號往往以頻率形式出現,用示波器觀察最簡單的調幅載波信號也不方便,往往顯示載波時看不清調製儀,屏幕上獲得的是三條譜線,即載頻和在載頻左右的調製頻。調製方式越複雜,電子示波器越難顯示,頻譜分析器的表達能力強,頻譜分析儀是名副其實的頻域儀器的代表。溝通時間一頻率的數字表達方法就是傅立葉變換,它把時間信號分解成正弦和餘弦曲線的疊加,完成信號由時間域轉換到頻率域的過程。

早期的頻譜分析儀實質上是一臺掃頻接收機,輸入信號與本地振蕩信號在混頻器變頻後,經過一組並聯的不同中心頻率的帶通濾波器,使輸入信號顯示在一組帶通濾波器限定的頻率軸上。顯然,由於帶通濾波器由無源元件構成,頻譜分析器整體上顯得很笨重,而且頻率解析度不高。既然傅立葉變換可把輸入信號分解成分立的頻率分量,同樣可起著濾波器類似的作用,藉助快速傅立葉變換電路代替低通濾波器,使頻譜分析儀的構成簡化,解析度增高,測量時間縮短,掃頻範圍擴大,這就是現代頻譜分析儀的優點了。

矢量信號分析儀是在預定,頻率範圍內自動測量電路增益與相應的儀器,它有內部的掃頻頻率源或可控制的外部信號源。其功能是測量對輸入該掃頻信號的被測電路的增益與相位,因而它的電路結構與頻譜分析儀相似。頻譜分析儀需要測量未知的和任意的輸入頻率,矢量信號分析儀則只測量自身的或受控的已知頻率;頻譜分析儀只測量輸入信號的幅度(標量儀器),矢量信號分析儀則測量輸入信號的幅度和相位(矢量儀器)。由此可見,矢量信號分析儀的電路結構比頻譜分析儀複雜,價位也較高。現代的矢量信號分析儀也採用快速傅立葉變換,以下介紹它們的異同。

頻譜分析議和FFT頻譜分析議

傳統的頻譜分析儀的電路是在一定帶寬內可調諧的接收機,輸入信號經下變頻後由低通濾器輸出,濾波輸出作為垂直分量,頻率作為水平分量,在示波器屏幕上繪出坐標圖,就是輸入信號的頻譜圖。由於變頻器可以達到很寬的頻率,例如30Hz-30GHz,與外部混頻器配合,可擴展到100GHz以上,頻譜分析儀是頻率覆蓋最寬的測量儀器之一。無論測量連續信號或調製信號,頻譜分析儀都是很理想的測量工具。

但是,傳統的頻譜分析儀也有明顯的缺點,首先,它只適於測量穩態信號,不適宜測量瞬態事件;第二,它只能測量頻率的幅度,缺少相位信息,因此屬於標量儀器而不是矢量儀器;第三,它需要多種低頻帶通濾波器,獲得的測量結果要花費較長的時間,因此被視為非實時儀器。

既然通過傅立葉運算可以將被測信號分解成分立的頻率分量,達到與傳統頻譜分析儀同樣的結果,出現基於快速傅立葉變換(F盯)的頻譜分析儀。這種新型的頻譜分析儀採用數字方法直接由模擬/數字轉換器(ADC)對輸入信號取樣,再經FFT處理後獲得頻譜分布圖。據此可知,這種頻譜分析儀亦稱為實時頻譜分析儀,它的頻率範圍受到ADC採集速率和FFT運算速度的限制。

為獲得良好的儀器線,性度和高解析度,對信號進行數據採集的ADC需要12位-16位的解析度,按取樣原理可知,ADC的取樣率最少等於輸入信號最高頻率的兩倍,亦即頻率上限是100MHz的實時頻譜分析儀需要ADC有200MS/S的取樣率。

目前半導體工藝水平可製成解析度8位和取樣率4GS/S的ADC或者解析度12位和取樣率800MS/S的ADC,亦即,原理上儀器可達到2GHz的帶寬,此時垂直解析度只有8位(256級),顯然8位解析度過低,因此,實時頻譜分析儀適用於制MHz帶寬以下的頻段,此時具有12位(物96級)以上的解析度。為了擴展頻率上限,可在ADC前端增加下變頻器,本振採用直接數字事成的振蕩器,這種混合式的頻譜分析儀適合在幾GHz以下的頻段使用。

FFT的性能用取樣點數和取樣率來表徵,例如用100KS/S的取樣率對輸入信號取樣1024點,則最高輸入頻率是50KHz和解析度是50Hz。如果取樣點數為2048點,則解析度提高到25Hz。由此可知,最高輸人頻率取決於取樣率,解析度取決於取樣點數。FFT運算時間與取樣,點數成對數關係,頻譜分析儀需要高頻率、高解析度和高速運算時,要選用高速的FFT硬體,或者相應的數位訊號處理器(DSP)晶片。例如,10MHz輸入頻率的1024點的運算時間80μs,而10KHz的1024點的運算時間變為64ms,1KHz的1024點的運算時間增加至640ms。當運算時間超過200ms時,屏幕的反應變慢,不適於眼睛的觀察,補救辦法是減少取樣點數,使運算時間降低至200ms以下。

矢量網絡分析儀

對於頻譜分析和電磁幹擾測量來說,頻譜分析儀是通信測量儀器中常用的設備,由於具有大於1∞dB的動態範圍、低於-110dBc/Hz的噪聲、1Hz-100Hz的帶寬、50GHz以上的頻率範圍,能夠接收到極微弱的信號和分辨出兩個幅度相差很大的信號。頻譜分析儀的缺點是只能顯示頻率分量的幅值,而不能獲得信號的相位。對於某些通信元器件和通信鏈路,幅值和相位必須能夠同時測量出來,前者如放大器和振蕩器,後者是第一代至第三代的移動通信。

前面曾提及,為了擴大基於FFT的頻譜分析儀的頻率範圍,可在前端增加下變頻器。同樣原理可用於矢量信號分析儀,它是傳統頻譜分析儀與F阿分析儀的結合,從而獲得在高頻和射頻頻率下的FFT分析能力,同時顯示幅度和相位信息。對於現代通信的數字調製分析,以及調幅/調頻/調相的解調都是非常有效的手段。

頻譜分析儀的變頻前端擴展儀器到GHz的頻段,經變頻後的輸入信號頻率變成適於FFr處理的頻段,電路中的濾波器與頻譜分析儀的濾波器不同,這裡的濾波器不是選擇性的,而防止ADC變換過程產生的信號混疊,即變換過程中出現的虛假信號。ADC的輸出分成兩路,獲得同相和正交信號,經DSP作時間一頻率的F町運算後由顯示屏獲得頻譜的幅度和相位。

目前儀器公司供應的矢量信號分析器的頻率範圍可達3GHz,測量對象是複雜的移動通信常用頻段的調製信號,如GSM、CDMA的基帶特性和載波特性。矢量信號分析儀的測量模式有:標量、矢量、數字解調和門控測量。觸發可由基帶輸人信號或由中頻信號調節,包括觸發電平和相位。掃頻方式有單次和連續,對測量數據可多次平均,並用有效值(RMS)、峰值保持和指數坐標指示。

一種新型的矢量信號分析器的重要特性是:頻率範圍—DC~2.7GHz;基帶帶寬—40MHz;中頻帶寬—36MHz;率解析度—0.001Hz時基準確度—0.2ppm/年;相位噪聲—97dBc/Hz(載波偏移100Hz),-122dBc/Hz(載波偏移1khz)幅度範圍45~+20dBm;幅度準確度—±2dB;三階互調失真—70dB。應用領域是衛星通信、擴頻跳頻通信、點到點通信、以及頻率監控和搜索。以移動通信的碼分多址(CDMA)來說,利用配套的分析軟體,可以獲得:

·發射機的平均載波功率

·功率隨時間的變化

·相位和頻率誤差

·鄰近信道功率比

·偽隨機噪聲序列的調製精度

·近距離寄發生發射頻率

·頻譜測量和波形測量

在無線基站或行動電話的產品開發和產品檢驗中,矢量信號分析儀可按多種工業標準,對GSM、CDMA等的發射機和手機進行嚴格的精度和動態範圍測量。在CDMA等通信產品生產中,只利用連續測量是不夠的,利用數字調製信號可方便地測出輸出功率和失真等重要參數。

矢量信號分析儀採用Windows平臺,容易通過外接微機進行數據處理和交換,Windows平臺便於性能升級和利用其他工程設計工具,熟識的圖形界面可縮短學習時間,留出更多的時間進行測量和應用各種設計及測試工具。

數字存儲示波器的頻譜測量

數字存儲示波器(DSO)的前端就是ADC變換,因而同樣具有頻譜分析能力,通過標準或選購的FFT模塊獲得頻譜分析特性。應該指出,DSO主要特點是時域測量,帶寬100MHz的產品具有10位以上的垂直解析度,帶寬500MHz的產品只有8位的解析度,亦即在解析度上低於頻譜分析儀的12位-16位。DSO的前置放大器和衰減器引人瞬態失真,容易在頻譜圖上表現為低電平的譜波噪聲。

特別是高頻數字在存儲示波器,它採用交疊的ADC來提高取樣率,例如每塊ADC的取樣率是1Gs/s,兩塊疊加起來獲得2Gs/s的取樣率。這是簡便的提高有效帶寬的辦法,但用於頻譜顯示時,各ADC的線性度、增益、頻率響應和取樣定時稍有差別,都會在取樣時鐘脈衝交疊取樣過程中引人頻譜失真,相當多了一組Fs/N的取樣脈衝,這裡且是基本取樣頻率,N是交疊的ADC數。這種電路自身產生的混疊信號不容易用濾波器消除,用DS0測量高頻信號時要非常小心在頻譜圖上出現的混疊信息。例如,利用上述兩塊取樣率1Gs/sADC構成的DSO來觀察l00MHz正弦波時,會在900、1100MHz附近出現虛假信號。由此可見,DSO觀察時域信號是最好的儀器,由於頻域變換後往往出現虛假信號,測量頻譜特性時一定要注意「去偽存真」。

小結

頻譜分析儀的頻率範圍最寬,靈敏度高,非常適於通信設備和鏈路的頻率分布測量,缺點是只能獲得輸入信號的幅值。矢量信號分析儀頻率範圍較低,利用FFT的特點能夠同時獲得幅度和相位,特別地第一、二、三代移動通信,包括蜂窩、GSM和CDMA設備的測量。

相關焦點

  • 頻譜分析儀和信號分析儀區別及常見問題解答
    頻譜分析儀和信號分析儀這兩個術語往往可以互換使用,不過兩者在功能和能力上還是有一定區別。當今的分析儀可進行更全面的頻域、時域和調製域信號分析,用「信號分析儀」來描述更為準確。 頻譜分析儀:測量在儀器的整個頻率範圍內輸入信號幅度隨頻率進行變化的情況。其最主要的用途是測量已知和未知信號的頻譜功率。
  • 一文了解頻譜分析儀和網絡分析儀的區別
    打開APP 一文了解頻譜分析儀和網絡分析儀的區別 工程師之餘 發表於 2018-11-07 10:47:16 頻譜分析儀和網絡分析儀之間的區別 頻譜分析儀有兩種主要結構:掃描類型和FFT。
  • 頻譜分析儀的種類與應用
    頻譜分析儀(Spectrum Analyzer)主要用於顯示頻域輸入信號的頻譜特性。  新一代頻譜分析儀則是基於快速傅立葉轉換(FFT)的量測儀器。透過傅立葉 運算將被測信號分解成分立的頻率分量,進而達到與傳統頻譜分析儀同樣的結果。新型的頻譜分析儀採用數位方式,直接由類比/數位轉換器(ADC)對輸入信號 取樣,再經傅立葉運算處理後而得到頻譜分布圖。  在今天的量測中,不管是什麼信號,都可以用許多方法進行測量。
  • 頻譜分析儀
    頻譜分析儀(Spectrum Analyzer)是頻域測量中應用非常廣泛的一類測量儀器,被譽為頻域裡的示波器,可用於載波功率、諧波寄生、交調互調
  • 頻譜分析儀調幅信號測量分析
    頻譜分析儀主要用於頻譜分析,也可測量頻率、電平、衰減、調製、失真、抖動等,還廣泛應用於通訊、雷達、導航、電子對抗、空間技術、衛星地面站、頻率管理、信號監測、EMI診斷、E M C測量等方面,是發揮軍用電子元器件、軍用整機系統等部門科研、生產、測試、試驗、計量的必備儀器。二、頻譜分析儀的組成及工作原理圖1所示為掃頻調諧超外差頻譜分析儀組成框圖。
  • 頻譜分析儀的七大性能指標
    頻譜分析儀是一種用於在頻域中顯示信號幅度的儀器。在射頻領域,傳統的萬用表無法有效測量信號的幅度,示波器很難測量高頻信號,這是頻譜分析儀的優勢所在。下面則對頻譜分析儀的七大性能指標進行講解。
  • 講解實時頻譜分析儀的工作原理
    在設計和製作這種實時頻譜分析儀時,每個濾波器的中心頻率調諧在頻譜內的不同頻率上,這就要求濾波器的帶通很窄,濾波器的特性曲線接近矩形,且各濾波器的帶通頻率範圍要適當重疊。使頻譜分析儀能夠覆蓋整個頻率範圍,被測信號中任何一個頻譜成分不被遺漏,又能使被測信號中的不同頻率成分在不同顯示器上顯示。這樣各顯示器上所指示的是被測信號在該時刻所具有的頻譜分布情況。
  • 頻譜分析儀如何工作
    當用頻譜分析儀從頻域觀察時。能夠識別出所有頻率組成。以上圖為例,基波、3次諧波、5次諧波和11次諧波都可以被區分出來。由此可以看出,時域和頻域是從不同角度對同一個信號的描述。頻譜分析儀的工作原理就像一個寬帶接收機,寬帶範圍從幾十kHz或幾十MHz開始。接收機的功能是將輸入信號的頻率轉換為檢測迴路能處理的頻段。
  • 頻譜分析儀有什麼用 頻譜分析儀作用介紹【詳解】
    頻譜分析儀在射頻領域應用非常廣泛。頻譜儀最基本的作用就是發現和測量信號的幅度。頻譜儀可以以圖示化的方式顯示設定頻率範圍內的射頻信號,信號越強,頻譜儀顯示的幅度也越大。通過這種特性,頻譜儀被用來搜索和發現一定頻段內的射頻信號,廣泛應用在監測電磁環境、無線電頻譜監測、電子產品電磁兼容測量、無線電發射機發射特性、信號源輸出信號品質、反無線竊聽器等領域。頻譜儀可以測量射頻信號的多種特徵參數,包括頻率、選頻功率、帶寬、鄰道功率、調製波形、場強等。
  • 頻譜分析儀測量諧波的方法
    這些信號可以由有漂移的壓控振蕩器(VCO)或穩定的鎖相振蕩器或合成器產生。現代頻譜分析儀能利用本文中所述方法來進行這些測量。本文還將討論如何斷定在分析設備或被測器件(DUT)中是否產生諧波、對不同類型信號的最佳測量方法以及對數平均、電壓單位和均方根值(ms)計算的利用。  我們這裡所處理的所有信號均假定為周期信號,亦即它們的電壓隨時間的變化特性是重複的。
  • 百度百科詞條:實時頻譜分析儀
    頻譜分析儀是射頻微波設計和測試工作中的常用儀器,它能夠幫助電子工程師完成頻譜觀測、功率測量以及複雜信號解調分析等工作。傳統上一般將頻譜儀分為三類:掃頻式頻譜儀,矢量信號分析儀和實時頻譜分析儀。實時頻譜分析儀是隨著現代FPGA技術發展起來的一種新式頻譜分析儀,與傳統頻譜儀相比,它的最大特點在於在信號處理過程中能夠完全利用所採集的時域採樣點,從而實現無縫的頻譜測量及觸發。由於實時頻譜儀具備無縫處理能力,使得它在頻譜監測,研發診斷以及雷達系統設計中有著廣泛的應用。
  • 實時頻譜分析儀測試的工作原理
    實時頻譜分析儀測試的工作原理_泰克代理商1.1 FFT的基本原理FFT方法是通過傅立葉運算將被測信號分解成分立的頻率分量,達到與傳統頻譜分析儀同樣的效果。它採用數字方法直接由模擬/數字轉換器(ADC)對輸入信號取樣,再經FFT處理後獲得頻譜分布。
  • 安捷倫N9340B美國N9340B手持頻譜分析儀
    安捷倫N9340B手持式頻譜分析儀 手持式頻譜分析儀為您的工作提供可靠和精確的頻譜分析。 安捷倫N9340B手持式頻譜分析儀優化您的測試時間和精度 當您進行測試時,需通過快速的數據捕獲幫助定位和識別那些無規律的瞬態幹擾信號。這就是為什麼每一臺安捷倫N9340B手持式頻譜分析儀 頻譜分析儀都有極快掃描時間的原因。
  • R&S FSV信號頻譜分析儀的功能特點和應用優勢分析
    打開APP R&S FSV信號頻譜分析儀的功能特點和應用優勢分析 佚名 發表於 2020-12-04 09:43:42
  • RIGOL DSA815-TG頻譜分析儀評測
    頻譜分析儀可以用於測量頻率、功率幅度、諧波、帶寬以及其他射頻信號相關的參數。本文引用地址:http://www.eepw.com.cn/article/144597.htm  我在ARRL實驗室經常進行的一個重要測試項目是對發射機或功放進行帶外輻射指標的測試。在該指標的測試過程中,會測量發射信號的所有諧波和雜散相對基波(載波)信號的電平幅度差。
  • 日圖教你如何選擇頻譜分析儀
    頻譜分析儀是一種多用途的電子測量儀器,它主要是測量信號失真度、調製度、譜純度、頻率穩定度和交調失真等信號參數。長期的使用頻譜分析儀,會由於種種因素出現故障的發生。
  • 頻譜分析儀的一些特別的用法總結
    這段時間測試項目比較多, 接觸了各種頻譜分析儀, 各個廠家的頻譜分析儀雖然看似很不同, 其實功能操作有很多相同點. 所以這裡簡單的談談頻譜分析儀的使用.   頻譜儀對射頻工程師來說應該不會陌生, 它和網絡分析儀, 波形儀是三個最基本的測試儀器.
  • 基於ZYNQ系列 SoC和AD9361實現的簡易頻譜分析儀
    摘要:頻譜分析儀是用來檢測電信號頻譜特徵的儀器,在通信、雷達以及電子產品研發等領域有著廣泛的應用。本文設計了基於ZYNQ系列SoC(System on chip)和AD9361實現的簡易頻譜分析儀,頻譜數據可以通過串口發送給上位機,並在上位機中通過MATLAB進行數據處理和分析。相比普通頻譜分析儀,該簡易頻譜分析儀使用便捷,體積小,且十分便於功能擴展。
  • 選擇頻譜分析儀該注意哪些點?
    頻譜儀在選型中有一些常見問題是需要用戶注意的,今天Agitek就來為大家具體介紹一下頻譜分析儀選型指南問題,希望可以幫助到大家!頻率範圍   頻譜工作時所能分析的信號頻率範圍。為頻譜的首選指標,必須保證測試信號在頻譜的工作頻率範圍以內。   2. 輸入功率   頻譜的輸入功率分為平均連續、脈衝輸入功率。平均連續功率是指儀器能連續輸入信號的最大功率值。脈衝輸入功率是指頻譜能測量的脈衝輸入功率的值(嚴格遵守廠家要求的脈衝寬度,佔空比參數)。
  • 噪聲頻譜分析儀
    噪聲頻譜分析儀是一種噪聲的測量儀器。