近年來深度神經網絡模型不斷迎來重大突破

2021-01-22 幾分真熱

近年來深度神經網絡模型不斷迎來重大突破,由深度學習為代表的機器學習相關研究取得了長足進步。但對機器學習研究普及者和研究機構來說,由於對機器學習原理、應用實踐以及技術應用多方面的缺乏概念理解,這些機器學習技術發展存在顯著的「彎路」。本文將對機器學習與深度學習的發展進行簡要的介紹和比較,提供科普性文章讀者進行高效理解。

特別強調,作者從事機器學習應用研究工作以及為網際網路、智慧型手機行業提供ai技術服務,其對機器學習相關知識的掌握程度遠超業內從業者平均水平。基於各自的豐富經驗,該文對機器學習/深度學習技術原理、應用領域、其它最新技術形態進行了系統總結,提供深入淺出的入門指南,助讀者全面、準確把握機器學習/深度學習相關技術。

中:在硬體方面的系統介紹上:系統總結下:相關系列文章中會有更詳細的文章介紹更多機器學習/深度學習資源,機器學習入門必備書籍匯總本期機器學習訓練營通過16期訓練營學員學習後,整理了python機器學習以及深度學習的入門書籍匯總給大家。對於剛剛接觸機器學習和深度學習的小夥伴們來說,是一份非常有價值的資料。

第三次人工智慧浪潮與深度學習中文,完整列表見知在機器智能向更大的深度神經網絡發展的過程中,從局部著眼把代價太高了,放眼全局更合理。

微小型圖像分割問題,相當於是一個很寬泛的跨網絡的計算框架,計算模塊覆蓋很全,大尺寸圖像就能有效利用。正所謂取長補短。全圖分割問題還不好處理,必須讓單一計算模塊做支撐,且必須通過全局網絡的參數優化才能處理。

相關焦點

  • 深度學習之卷積神經網絡經典模型
    隨著ReLU與dropout的提出,以及GPU帶來算力突破和網際網路時代大數據的爆發,卷積神經網絡帶來歷史的突破,AlexNet的提出讓深度學習走上人工智慧的最前端。這個通過增加了神經網絡的深度和寬度獲得了更好地效果,在此過程中保證了計算資源的不變。這個網絡論證了加大深度,寬度以及訓練數據的增加是現有深度學習獲得更好效果的主要方式。但是增加尺寸可能會帶來過擬合的問題,因為深度與寬度的加深必然會帶來過量的參數。此外,增加網絡尺寸也帶來了對計算資源侵佔過多的缺點。
  • 深度神經決策樹:深度神經網絡和樹模型結合的新模型
    深度神經決策樹:深度神經網絡和樹模型結合的新模型 工程師郭婷 發表於 2018-08-19 09:14:44 近日,來自愛丁堡大學的研究人員提出了一種結合深度神經網絡和樹模型的新型模型
  • 基於深度神經網絡的脫硫系統預測模型及應用
    但上述改進仍未考慮脫硫系統大慣性的特點,FU J 等使的用 LSTM 網絡,就能實現信息在時序上傳遞。不過因其設計的網絡只使用了 LSTM 一種結構,神經網絡在結構設計上還有改進空間。基於上述分析,本文採用多種網絡結構和數據處理技術設計深度神經網絡模型,模型預測誤差水平和訓練代價顯著下降。
  • 深度| 清華大學自動化系張長水教授:神經網絡模型的結構優化
    清華大學自動化系張長水教授帶來了題為《神經網絡模型的結構優化》的報告。今天我和大家分享的主題是「神經網絡模型的結構優化」。不管怎麼說,深度學習模型在傳統的很多機器學習問題和相關問題上,都取得了令人矚目的突破和進展。我舉幾個例子,比如圖像識別。圖像識別是這樣一個問題:有一張圖像,需要識別這個圖像是貓、是狗、是計算機、是羽毛球拍?在2012年的深度學習網絡用於解決問題時,有了很大的突破。除此之外還有其他的問題,比如圖像描述、機器翻譯、語音識別。
  • 百度NLP | 神經網絡模型壓縮技術
    作者:百度NLP引言近年來,我們在神經網絡模型與 NLP 任務融合方面深耕,在句法分析、語義相似度計算、聊天生成等各類方向上,均取得顯著的進展。在搜尋引擎上,語義相似度特徵也成為了相關性排序系統最為重要的特徵之一。
  • 知識普及:卷積神經網絡模型是怎樣工作的?可以做些什麼?
    知識普及:卷積神經網絡模型是怎樣工作的?可以做些什麼? 眾所周知,在過去的幾年裡,卷積神經網絡(CNN或ConvNet)在深度學習領域取得了許多重大突破,但對於大多數人而言,這個描述是相當不直觀的。因此,要了解模型取得了怎樣大的突破,我們應該先了解卷積神經網絡是怎樣工作的。 卷積神經網絡可以做些什麼? 卷積神經網絡用於在圖像中尋找特徵。在CNN的前幾層中,神經網絡可以進行簡單的「線條」和「角」的識別。
  • 神經網絡和深度學習簡史(全)
    讓我告訴你,說來話長——這不僅僅是一個有關神經網絡的故事,也不僅僅是一個有關一系列研究突破的故事,這些突破讓深度學習變得比「大型神經網絡」更加有趣,而是一個有關幾位不放棄的研究員如何熬過黑暗數十年,直至拯救神經網絡,實現深度學習夢想的故事。
  • 人工智慧黑盒揭秘:深度神經網絡可視化技術
    但深度神經網絡又被稱為「黑盒」模型,多層隱藏結構,數據 / 特徵矢量化,海量決策關鍵元等因素讓模型使用者犯難:模型決策的依據是什麼?應該相信模型麼?特別是對於金融,醫藥,生物等關鍵型任務,深度學習模型的弱解釋性成為人工智慧項目落地的最大障礙。
  • 神經網絡算法在我國核領域中的應用綜述
    從 1956 年在達特蒙斯學院(Dartmouth)暑期論壇上首次提出[1],已經經過了 60 多年的發展和積澱,近十幾年來,隨著網際網路、雲計算、大數據、超級計算等新技術的發展,推動了 以基於深度學習的神經網絡(簡稱深度學習)為代表的人工智慧技術飛速發展,廣泛應用於圖像分類、語音 識別、知識問答、人機對弈、無人駕駛等領域,迎來爆發式增長的新高潮,正引發可產生鏈式反應的科 學突破,加速新一輪的科技革命和產業變革
  • 【深度】機器學習進化史:從線性模型到神經網絡
    大約在2005年左右,神經網絡又開始捲土重來。神經網絡其實算是上世紀80年代的技術,一些人甚至認為它起源於上世紀60年代,得益於計算機視覺的技術的最新進展,讓(卷積)神經網絡的使用顯得卓有成效。事實上,神經網絡已經開始在其他應用上「大展宏圖」,包括自然語言處理和機器翻譯等領域。但是有一個問題:在所有提及的機器學習分布式模型中,神經網絡可能是最具挑戰性的。
  • 神經網絡:高深莫測又妙趣橫生的完整歷史
    自上個世紀以來,神經網絡和人工智慧一直是熱門話題。在流行文化電影中,人工智慧機器人風靡全球,吸引著大量獵奇之士。 神經網絡的靈感來源於生物神經元是一種受編程範式啟發的模型,它使深度學習模型能夠在複雜的觀測數據集上有效地學習和訓練。
  • 深度學習:神經網絡算法的昨天、今天和明天
    針對神經網絡輸出結果與真實結果之間的差異,神經網絡會通過梯度(Gradient)逐層調整相應的權重以縮小差異,從而達到深度學習的目的。二、深度學習的雛形其實,模擬動物的神經活動,並非深度學習的專利。早在1957年,Frank Rosenblatt就提出了感知機(Perceptron)的概念。這是一種只能分出兩類結果的單層神經網絡。
  • 深度學習背後的基礎-神經網絡揭秘
    最近, 深度學習三傑獲得了計算機界最重要的圖靈獎, 它們的貢獻都集中在對深度學習的根據神經網絡的理論突破。 今天我們看到的所有和人工智慧有關的偉大成就, 從阿法狗到自動駕駛, 從海量人臉識別到對話機器人, 都可以歸功於人工神經網絡的迅速崛起。那麼對於不了解神經網絡的同學如何入門? 神經網絡的技術為什麼偉大, 又是什麼讓它們這麼多年才姍姍走來?
  • 深度學習時代的圖模型,清華發文綜述圖網絡
    因此,如何利用深度學習方法進行圖數據分析近年來吸引了大量的研究者關注。該問題並不尋常,因為將傳統深度學習架構應用到圖中存在多項挑戰:不規則領域:與圖像不同,音頻和文本具備清晰的網格結構,而圖則屬於不規則領域,這使得一些基礎數學運算無法泛化至圖。例如,為圖數據定義的卷積和池化操作並不是直接的,而這些是卷積神經網絡(CNN)中的基礎操作。
  • 機器學習算法盤點:人工神經網絡、深度學習
    在建立預測模型的時候,監督式學習建立一個學習過程,將預測結果與「訓練數據」的實際結果進行比較,不斷的調整預測模型,直到模型的預測結果達到一個預期的準確率。監督式學習的常見應用場景如分類問題和回歸問題。   人工神經網絡算法模擬生物神經網絡,是一類模式匹配算法。通常用於解決分類和回歸問題。
  • 神經網絡模型預測值 論文_bp神經網絡預測模型建模步驟 - CSDN
    在深度學習十分火熱的今天,不時會湧現出各種新型的人工神經網絡,想要實時了解這些新型神經網絡的架構還真是不容易。光是知道各式各樣的神經網絡模型縮寫(如:DCIGN、BiLSTM、DCGAN……還有哪些?),就已經讓人招架不住了。因此,這裡整理出一份清單來梳理所有這些架構。
  • 深度學習進入晶片領域,揭秘寒武紀神經網絡處理器
    為解決此問題,使用了一套基於機器學習的處理器性能建模方法,並基於該性能模型最終為DianNao選定了各項設計參數,在運算和訪存間取得了平衡,顯著提升了執行神經網絡算法時的效能。即便數據已經從內存取到了片上,搬運的能耗依然非常高。
  • 正則表達式與神經網絡的深度融合
    > 本文介紹了上海科技大學屠可偉研究組與樂言科技的一項合作研究,提出了將正則表達式規則與神經網絡深度融合的新思路
  • AutoML : 更有效地設計神經網絡模型
    在本文中,我們將介紹AutoML的以下內容:關於AutoKeras的一個簡短介紹通過AutoKeras這個神經架構搜索算法,我們可以找到最好的神經網絡架構,比如層中神經元的數量,架構的層數,加入哪些層,層的特定參數,比如Dropout中的濾波器大小或掉落神經元的百分比等等。
  • 一種基於能量模型的神經網絡架構受限玻爾茲曼機
    一種基於能量模型的神經網絡架構受限玻爾茲曼機 李倩 發表於 2018-07-26 10:09:24 受限玻爾茲曼機是一種基於能量模型的神經網絡架構,雖然不像通常的卷積神經網絡一樣被人熟知