生物傳感器(biosensor)對生物物質敏感並將其濃度轉換為電信號進行檢測的儀器。是由固定化的生物敏感材料作識別元件(包括酶、抗體、抗原、微生物、細胞、組織、核酸等生物活性物質)與適當的理化換能器(如氧電極、光敏管、場效應管、壓電晶體等等)及信號放大裝置構成的分析工具或系統。生物傳感器具有接受器與轉換器的功能。對生物物質敏感並將其濃度轉換為電信號進行檢測的儀器。生物傳感器具有接受器與轉換器的功能。
1967年S.J.烏普迪克等制出了第一個生物傳感器葡萄糖傳感器。將葡萄糖氧化酶包含在聚丙烯醯胺膠體中加以固化,再將此膠體膜固定在隔膜氧電極的尖端上,便製成了葡萄糖傳感器。當改用其他的酶或微生物等固化膜,便可製得檢測其對應物的其他傳感器。固定感受膜的方法有直接化學結合法;高分子載體法;高分子膜結合法。現已發展了第二代生物傳感器(微生物、免疫、酶免疫和細胞器傳感器),研製和開發第三代生物傳感器,將系統生物技術和電子技術結合起來的場效應生物傳感器,90年代開啟了微流控技術,生物傳感器的微流控晶片集成為藥物篩選與基因診斷等提供了新的技術前景。由於酶膜、線粒體電子傳遞系統粒子膜、微生物膜、抗原膜、抗體膜對生物物質的分子結構具有選擇性識別功能,只對特定反應起催化活化作用,因此生物傳感器具有非常高的選擇性。缺點是生物固化膜不穩定。生物傳感器涉及的是生物物質,主要用於臨床診斷檢查、治療時實施監控、發酵工業、食品工業、環境和機器人等方面。
生物傳感器是用生物活性材料(酶、蛋白質、DNA、抗體、抗原、生物膜等)與物理化學換能器有機結合的一門交叉學科,是發展生物技術必不可少的一種先進的檢測方法與監控方法,也是物質分子水平的快速、微量分析方法。在未來21世紀知識經濟發展中,生物傳感器技術必將是介於信息和生物技術之間的新增長點,在國民經濟中的臨床診斷、工業控制、食品和藥物分析(包括生物藥物研究開發)、環境保護以及生物技術、生物晶片等研究中有著廣泛的應用前景。