The microbe-derived short-chain fatty acids butyrate and ...

2021-02-13 Blood中文時訊

BRIEF REPORT| JULY 2, 2020

The microbe-derived short-chain fatty acids butyrate and propionate are associated with protection from chronic GVHD

Kate A. Markey, Jonas Schluter, Antonio L. C. Gomes, Eric R. Littmann, Amanda J. Pickard, Bradford P. Taylor, Paul A. Giardina, Daniela Weber, Anqi Dai, Melissa D. Docampo, Gabriel K. Armijo, Ann E. Slingerland, John B. Slingerland, Katherine B. Nichols, Daniel G. Brereton, Annelie G. Clurman, Ruben J. Ramos, Arka Rao, Amy Bush, Lauren Bohannon, Megan Covington, Meagan V. Lew, David A. Rizzieri, Nelson Chao, Molly Maloy, Christina Cho, Ioannis Politikos, Sergio Giralt, Ying Taur, Eric G. Pamer, Ernst Holler, Miguel-Angel Perales, Doris M. Ponce, Sean M. Devlin, Joao Xavier, Anthony D. Sung, Jonathan U. Peled, Justin R. Cross, Marcel R. M. van den Brink

Blood (2020) 136 (1): 130–136.

https://doi.org/10.1182/blood.2019003369

Key PointsAbstract

Studies of the relationship between the gastrointestinal microbiota and outcomes in allogeneic hematopoietic stem cell transplantation (allo-HCT) have thus far largely focused on early complications, predominantly infection and acute graft-versus-host disease (GVHD). We examined the potential relationship of the microbiome with chronic GVHD (cGVHD) by analyzing stool and plasma samples collected late after allo-HCT using a case-control study design. We found lower circulating concentrations of the microbe-derived short-chain fatty acids (SCFAs) propionate and butyrate in day 100 plasma samples from patients who developed cGVHD, compared with those who remained free of this complication, in the initial case-control cohort of transplant patients and in a further cross-sectional cohort from an independent transplant center. An additional cross-sectional patient cohort from a third transplant center was analyzed; however, serum (rather than plasma) was available, and the differences in SCFAs observed in the plasma samples were not recapitulated. In sum, our findings from the primary case-control cohort and 1 of 2 cross-sectional cohorts explored suggest that the gastrointestinal microbiome may exert immunomodulatory effects in allo-HCT patients at least in part due to control of systemic concentrations of microbe-derived SCFAs.

Subjects:

Brief Reports, Clinical Trials and Observations, Immunobiology and Immunotherapy, Transplantation

Topics:

butyrates, graft-versus-host disease, chronic, microbiome, microorganisms, propionates, volatile fatty acids, allogeneic hematopoietic stem cell transplant, allopurinol, feces, plasma

REFERENCES

1.Wingard J, Majhail N, Brazauskas R, et al. Long-term survival and late deaths after allogeneic hematopoietic cell transplantation. J Clin Oncol. 2011;29(16):2230-2239.

2.MacDonald K, Hill G, Blazar B. Chronic graft-versus-host disease: biological insights from preclinical and clinical studies. Blood. 2017;129(1):13-21.

3.Jenq R, Taur Y, Devlin S, et al. Intestinal blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21(8):1373-1383.

4.Peled J, Devlin S, Staffas A, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 2017;35(15):1650-1659.

5.Shono Y, Docampo M, Peled J, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med. 2016;8(339):339ra71.

6.Hill G, Olver S, Kuns R, et al. Stem cell mobilization with G-CSF induces type 17 differentiation and promotes scleroderma. Blood. 2010;116(5):819-828.

7.Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167(4):1125-1136.e1128.

8.Atarashi K, Tanoue T, Ando M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 2015;163(2):367-380.

9.Mathewson N, Jenq R, Mathew A, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease [published correction appears in Nat Immunol. 2016;17(10):1235]. Nat Immunol. 2016;17(5):505-513.

10.Fujiwara H, Docampo M, Riwes M, et al. Microbial metabolite sensor GPR43 controls severity of experimental GVHD. Nat Commun. 2018;9(1):3674.

11.Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451-455.

12.Kaiko G, Ryu S, Koues O, et al. The colonic crypt protects stem cells from microbiota-derived metabolites [published correction appears in Cell. 2016;167(4):1137]. Cell. 2016;165(7):1708-1720.

13.Haak B, Littmann E, Chaubard J, et al. Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood. 2018;131(26):2978-2986.

14.Lee J, Huang J, Magruder M, et al. Butyrate-producing gut bacteria and viral infections in kidney transplant recipients: a pilot study. Transpl Infect Dis. 2019;21(6):e13180.

15.Peled J, Gomes A, Devlin S, et al. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N Engl J Med. 2020;382(9):822-834.

16.Taur Y, Jenq R, Perales M, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174-1182.

17.Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant. 2015;21(3):389-401.e381.

18.Taur Y, Coyte K, Schluter J, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med. 2018;10(460):eaap9489.

19.Franzosa E, McIver L, Rahnavard G, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15(11):962-968.

20.Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.

21.Zhai B, Ola M, Rolling T, et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med. 2020;26(1):59-64.

22.Colosimo DA, Kohn JA, Luo PM, et al. Mapping interactions of microbial metabolites with human G-protein-coupled receptors. Cell Host Microbe. 2019;26(2):273-282.e277.

23.Oksanen J, Blanchet FG, Friendly M, et al vegan: Community Ecology Package; R package version 2.5-6. https://CRAN.R-project.org/package=vegan. Accessed 24 September 2019.

24.Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo J, Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15(6):382-396.

25.Gopalakrishnan D, Koshkin V, Ornstein M, Papatsoris A, Grivas P. Immune checkpoint inhibitors in urothelial cancer: recent updates and future outlook. Ther Clin Risk Manag. 2018;14:1019-1040.

26.Schluter J, Peled JU, Taylor BP, et al. The gut microbiota influences how circulating immune cells in humans change from one day to the next [published online 21 November 2019]. bioRxiv. doi:10.1101/618256.

27.Salvatier J, Wiecki T, Fonnesbeck C. Probabilistic programming in Python using PyMC3. PeerJ Comput Sci. 2016;2:e55.

28.Taur Y, Xavier J, Lipuma L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55(7):905-914.

29.Morjaria S, Schluter J, Taylor B, et al. Antibiotic-induced shifts in fecal microbiota density and composition during hematopoietic stem cell transplantation. Infect Immun. 2019;87(9):e00206-19.

30.Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623-628.

31.Pidala J, Vogelsang G, Martin P, et al. Overlap subtype of chronic graft-versus-host disease is associated with an adverse prognosis, functional impairment, and inferior patient-reported outcomes: a Chronic Graft-versus-Host Disease Consortium study. Haematologica. 2012;97(3):451-458.

32.Arora M, Cutler C, Jagasia M, et al. Late acute and chronic graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(3):449-455.

33.Shimizu J, Kubota T, Takada E, et al. Propionate-producing bacteria in the intestine may associate with skewed responses of IL10-producing regulatory T cells in patients with relapsing polychondritis. PLoS One. 2018;13(9):e0203657.

© 2020 by The American Society of Hematology

This program is developed by Focus Insight with the permission of American Society of Hematology, Inc. The content are excerpted from the journal Blood. Copyright © 2019 The American Society of Hematology. All rights reserved. 「American Society of Hematology」, 「ASH」 and the ASH Logo are registered trademarks of the American Society of Hematology.

相關焦點