設計院珍藏:民熔電流互感器使用注意事項及檢測方法

2020-12-04 浙江埃莫森電氣

(1)電流互感器的接線應遵守串聯原則

:即一次繞組應與被測電路串聯,而二次繞組則與所有儀表負載

電流互感器串聯

(2)按被測電流大小,選擇合適的變比,否則誤差將增大。同時,二次側一端必須接地,以防絕緣一旦損壞時,一次側高壓竄入二次低壓側,造成人身和設備事故

(3)二次側絕對不允許開路,因一旦開路,一次側電流I1全部成為磁化電流,引起φm和E2驟增,造成鐵心過度飽和磁化,發熱嚴重乃至燒毀線圈;同時,磁路過度飽和磁化後,使誤差增大。

電流互感器在正常工作時,二次側與測量儀表和繼電器等電流線圈串聯使用,測量儀表和繼電器等電流線圈阻抗很小,二次側近似於短路。CT二次電流的大小由一次電流決定,二次電流產生的磁勢,是平衡一次電流的磁勢的。若突然使其開路,則勵磁電動勢由數值很小的值驟變為很大的值,鐵芯中的磁通呈現嚴重飽和的平頂波,因此二次側繞組將在磁通過零時感應出很高的尖頂波,其值可達到數千甚至上萬伏,危及工作人員的安全及儀表的絕緣性能。

另外,二次側開路使二次側電壓達幾百伏,一旦觸及將造成觸電事故。因此,電流互感器二次側都備有短路開關,防止二次側開路。在使用過程中,二次側一旦開路應馬上撤掉電路負載,然後,再停電處理。一切處理好後方可再用。

(4)為了滿足測量儀表、繼電保護、斷路器失靈判斷和故障濾波等裝置的需要,在發電機、變壓器、出線、母線分段斷路器、母線斷路器、旁路斷路器等迴路中均設2~8個二次繞組的電流互感器。

(5)對於保護用電流互感器的裝設地點應按儘量消除主保護裝置的不保護區來設置。例如:若有兩組電流互感器,且位置允許時,應設在斷路器兩側,使斷路器處於交叉保護範圍之中

(6)為了防止支柱式電流互感器套管閃絡造成母線故障,電流互感器通常布置在斷路器的出線或變壓器側

(7)為了減輕發電機內部故障時的損傷,用於自動調節勵磁裝置的電流互感器應布置在發電機定子繞組的出線側。為了便於分析和在發電機併入系統前發現內部故障,用於測量儀表的電流互感器宜裝在發電機中性點側。

電流互感器的接線方式按其所接負載的運行要求確定。最常用的接線方式為單相、三相星形和不完全星形三種,分別如圖4a、圖4b和圖4c。

電流互感器接線方式

額定變比和誤差:電流互感器的額定變比KN指電流互感器的額定電流比。即:KN=I1N/I2N

電流互感器原邊電流在一定範圍內變動時,一般規定為10~120%I1N,副邊電流應按比例變化,而且原、副邊電壓(或電流)應該同相位。但由於互感器存在內阻抗、勵磁電流和損耗等因素而使比值及相位出現誤差,分別稱為比差和角差。

比差為經折算後的二次電流與一次電流量值大小之差對後者之比,即fI 為電流互感器的比差。當KNI2>I1時,比差為正,反之為負。

對於沒有採取補償措施的電流互感器,比差為負值,角差為正值,比差的絕對值和角差均隨電流增大而減小。

採用補償的辦法可以減小互感器的誤差。一般通過在互感器上加繞附加繞組或增添附加鐵心,以及接入相應的電阻、電感、電容元件來補償。常用的補償法有匝數補償、分數匝補償、小鐵心補償、並聯電容補償等。

在進行電流互感器誤差試驗之前,通常需要檢查極性和退磁等試驗。

電流互感器一次繞組標誌為P1、P2,二次繞組標誌為S1、S2。若P1、S1是同名端,則這種標誌叫減極性。一次電流從P1進,二次電流從S1出。極性檢查很簡單,除了可以在互感器校驗儀上進行檢查外,還可以使用直流檢查法。

電流互感器在電流突然下降的情況下,互感器鐵芯可能產生剩磁。如電流互感器在大電流情況下突然切斷電源、二次繞組突然開路等。互感器鐵芯有剩磁,使鐵芯磁導率下降,影響互感器性能。長期使用後的互感器都應該退磁。互感器檢驗前也要退磁。退磁就是通過一次或二次繞組以交變的勵磁電流,給鐵芯以交變的磁場。從0開始逐漸加大交變的磁場(勵磁電流)使鐵芯達到飽和狀態,然後再慢慢減小勵磁電流到零,以消除剩磁。

對於電流互感器退磁,一次繞組開路,二次繞組通以工頻電流,從零開始逐漸增加到一定的電流值(該電流值與互感器的設計測量上限有關,一般為額定電流的20-50%左右。可以

電流互感器這樣判斷,如果電流突然急劇變大,此時表示鐵芯已進入磁飽和階段)。然後再將電流緩慢降為零,如此重複2-3次。在斷開電源前,應將一次繞組短接,才斷開電源。鐵芯退磁完成。此方法稱開路退磁法。對於有些電流互感器,由於二次繞組的匝數都比較多。若採用開路退磁法,開路的繞組可能產生高電壓。因此可以在二次繞組接上較大的電阻(額定阻抗的10-20倍)。一次繞組通以電流,從零漸變到互感器一次繞組的允許的最大電流,再漸變到零,如此重複2-3次。由於接有負載鐵芯可能不能完全退磁。由於一次繞組的最大電流有限制,過大的話可能燒壞一次繞組。如果接有負載的二次繞組產生電壓不是過高的話,可以加大二次繞組的負載電阻。這樣可以提高退磁效果。

互感器誤差試驗一般採用被測互感器與標準互感器進行比較,兩互感器的二次電流差即為被測互感器誤差。此種檢驗方法稱比較法。標準互感器要求比被測互感器高出二個等級,此時標準互感器誤差可忽略不計。若標準互感器比被測互感器只高一個等級,此時試驗結果誤差應考慮加上標準互感器誤差。

被測互感器與標準互感器的二次電流差一般採用互感器校驗儀進行量。直接從互感器校驗儀上讀出比值差fx(%),相位差δx(』)。由於互感器校驗儀測的是被測互感器與標準互感器電流差與二次電流的比值,所以對互感器校驗儀的要求不高。要能校驗什麼等級的互感器,基本由標準互感器決定。

標準互感器是互感器校驗系統的關鍵核心。對被測互感器進行校驗,除了標準互感器、互感器校驗儀還要有給互感器提供一次電流的升流器,可以調節升流器電流的調壓器,及負載。 [10]

電流互感器 - 使用注意事項電流互感器 [11] 運行時,副邊不允許開路。因為一旦開路,原邊電流均成為勵磁電流,使磁通和副邊電壓大大超過正常值而危及人身和設備安全。因此,電流互感器副邊迴路中不許接熔斷器,也不允許在運行時未經旁路就拆下電流表、繼電器等設備。

電流互感器運行時,副邊不允許開路。原因如下:

⒈電流互感器一次被測電流磁勢I1N1在鐵芯產生磁通Φ1

⒉電流互感器二次測量儀表電流磁勢I2N2在鐵芯產生磁通Φ2

⒊電流互感器鐵芯合磁通:Φ = Φ1 + Φ2

⒋因為Φ1.Φ2方向相反,大小相等,互相抵消,所以 Φ = 0

⒌若二次開路,即 I2 = 0 ,則:Φ = Φ1,電流互感器鐵芯磁通很強,飽和,鐵心發熱,燒壞絕緣,產生漏電

⒍若二次開路,即 I2 = 0 ,則:Φ = Φ1,Φ在電流互感器二次線圈N2中產生很高的感生電勢e,在電流互感器二次線圈兩端形成高壓,危及操作人員生命安全

⒎電流互感器二次線圈一端接地,就是為了防止高壓危險而採取的保護措施。

相關焦點

  • 工程師珍藏:民熔電流互感器—通用計算公式
    我們將設計一個電流互感器。使用電流互感器可以減小測量變換器原邊電流時的損耗,比如大功率開關電源,由於電流過大所以需要使用電流互感線圈來監測電流以減少損耗。電流互感器與一般的電壓變壓器的區別在什麼地方呢?
  • 剩餘電流互感器的安裝接線方法及注意事項
    打開APP 剩餘電流互感器的安裝接線方法及注意事項 發表於 2018-03-26 10:34:57      剩餘電流互感器的安裝接線方法及注意事項   1、剩餘電流互感器穿線   剩餘電流互感器在穿線前應分清電網中的相線
  • 開合式電流互感器優缺點及使用注意事項
    打開APP 開合式電流互感器優缺點及使用注意事項 網絡整理 發表於 2019-11-12 15:45:25   開合式電流互感器
  • 什麼是電流互感器,本篇文章帶你走進電流互感器的世界,民熔
    什麼是電流互感器,本篇文章帶你走進電流互感器的世界,民熔1、電流 互感器的作用(1)將一次系統的電流信息準確傳遞到二次側相關設備。例如,當保護裝置的額定輸入電流為5A時,在正常工況下,測量級的電流互感器二次輸出電流應在1~4.5A之間比較合理。如果太小,(如小於0.5A)就不合理了。保護級的電流互感器,由於要保證在系統故障時不飽和,一般變比要大於測量級的電流互感器變比。注意,電流互感器一次繞組,串聯變比不變容量增大一倍;並聯變比增大一倍,容量不變。
  • 開關電源電流檢測電路怎樣實現——看看民熔大牛的「奇思妙想」
    這點其實與民熔開關電源的優點不謀而合,低損耗是民熔開關電源的一大優勢。當然,民熔開關電源還有更多的優異之處,而為了這些,民熔電氣付出了不少心血。民熔開關電源能有在行業中突出的優勢,這是與民熔電氣的付出有著不可分割的關係的。電流檢測電路有兩種:電阻檢測和電流互感器檢測。
  • 電流互感器的檢測方法解析
    電流互感器是一種常用的互感器產品,可以把一次側大電流轉換成二次側小電流來使用,二次側不可開路。用戶對於電力互感器的應用知識需要進行正握。
  • 電流表的使用方法以及使用前注意事項
    鉗型電流表的原理及使用方法:鉗型表是一種用於測量正在運行的電氣線路的電流大小的儀表,可在不斷電的情況下測量電流。1.結構及原理鉗表實質上是由一隻電流互感器、鉗形扳手和一隻整流式磁電系有反作用力儀表所組成。2.使用方法(1)測量前要機械調零(2)選擇合適的量程,先選大,後選小量程或看銘牌值估算。
  • 鉗形電流表的 正確使用方法 及 注意事項
    鉗形電流表是一種測量正在運行的電氣線路中電流大小的可攜式電流表。它由電流互感器和電流表組成。那麼我們應該怎樣正確使用和應該了解注意哪些事項呢。 (1) 安全操作規程要牢牢記住:在高壓迴路操作應兩人進行,禁止用導線從鉗形電流表另接表計測量。使用時注意電壓等級,穿戴好絕緣鞋絕緣手套,站在絕緣墊上,不得觸及其他設備,以防登錄或接地。 觀看測量數據,要特別注意保持頭部與帶電部位的安全距離。
  • 鉗型表的使用方法及注意事項
    一、使用說明  通常用普通電流表測量電流時,需要將電路切斷停機後才能將電流表接入進行測量,這是很麻煩的,有時正常運行的電動機不允許這樣做
  • 教你正確使用穿心式電流互感器
    在實際運行中發現電流值總是很小,約27A左右,用鉗型電流表測得一次側實際工作電流為82A,兩者明顯不相符,而且三臺電動機情況基本類似,我們對一臺電動機更換了電流互感器、二次線路、電流表,情況依然。教你正確使用穿心式電流互感器2、事故分析仔細分析,我們發現一個共同規律,一、二次測檢測、計量電流都是將近相差三倍,這才引起我們的警覺,仔細查看互感器銘牌,才發現忽略一個重要的問題:安匝容量,註明300安匝,
  • 電流互感器在電磁爐電流檢測的應用
    電流檢測的電路有很多,一般都是通過電流信號轉化為電壓信號,然後通過單片機AD口檢測電壓,對於大電壓大電流場合一般都要降壓處理後再進行檢測,電流互感器就是這個原理,它利用的是電磁感應原理,將初級的大電流轉換到次級的小電流的一種器件。
  • 電流互感器的作用是什麼?低壓進線櫃為什麼會有7個電流互感器?
    說到電流互感器,相信大家都比較熟悉,它主要是對電流起到保護的作用。不僅能控制測量儀表,還能避免安全問題。然而許多人對於電流互感器時不太了解,那麼電流互感器的作用是什麼?低壓進線櫃為什麼會有7個電流互感器呢?帶著這兩個問題我們一起來看看吧!
  • 變壓器鐵芯接地故障怎樣檢測?民熔大牛三點實用的方法學會就懂了
    而變壓器鐵芯的故障通常是肉眼難以檢測到的,需要專業儀器進行故障檢測。民熔小課堂就整理了三點方法,適用於變壓器鐵芯接地故障的檢測,希望小課堂的方法或多或少能夠幫到大家。復古色調的電力變壓器站1、鉗式電流表法鉗式電流表法能準確、連續地檢測鐵心外接地的配電變壓器鐵心多點接地故障
  • 電壓互感器和電流互感器知識詳解原創
    2)電壓互感器的型號表示型號左起第一位字母J表示電壓互感器;第二位字母有:D表示單相,S表示三相,C表示串級式;第三位字母有:J表示油浸式,G表示乾式,Z表示澆注絕緣式;第四位字母J表示接地保護;第五位數字表示設計序號。3)注意事項電壓互感器運行中,二次側不能短路,否則會燒壞繞組。為此,二次側要裝熔斷器保護。
  • 電流互感器用於檢測智能電錶中的交流電流解析方案
    兼容直流的電流互感器一直用於檢測智能電錶中的交流電流,但它有一些缺點,而且很昂貴考慮上例中的零線電流檢測。傳統上使用電流互感器,因為它本身能夠提供隔離,但電流互感器必須為直流兼容型以免飽和,這會提高其成本。此外,它還會引入相位延遲,相位延遲隨頻率成分不同而異,因此難以在整個頻譜範圍內進行補償。分流電阻具有明顯的優勢。
  • 電流互感器結構及原理
    此種電流互感器的優點是可以根據負荷電流變比,調換二次接線端子的接線來改變變比,而不需要更換電流互感器,給使用提供了方便。 3.2 不同變比電流互感器。這種型號的電流互感器具有同一個鐵心和一次繞組,而二次繞組則分為兩個匝數不同、各自獨立的繞組,以滿足同一負荷電流情況下不同變比、不同準確度等級的需要,見圖4。
  • 零序電流互感器和電流互感器的區別
    零序電流互感器概述   零序電流互感器為一種線路故障電流監測器。一般只有一個鐵芯與二次繞組,使用時,將一次三芯電纜穿過互感器的鐵芯窗孔,二次通過引線接至專用的繼電器,再由繼電器的輸出端接到信號裝置或報警系統。在正常情況下,一次迴路中三相電流基本平衡,其所產生合成磁通也近於零。在互感器的二次繞組中不感生電流,當一次線路中發生單相接地等故障時,一次迴路中產生不平衡電流(意即零序電流),在二次繞組中感生微小的電流使繼電器動作,發生信號。
  • 剩餘電流互感器和零序電流互感器兩者的區別?
    剩餘電流互感器和零序電流互感器有什麼區別呢?我們從原理方面,安裝方面,使用方面,產品器件方面做詳細說明。2、零序電流互感器:適用於戶內、額定頻率50Hz或60Hz、額定電壓35kV及以下的小接地電流系統中供三相電纜接地保護用,也可與繼電器配套使用。在電力系統產生零序接地電流時與繼電保護裝置或信號配合使用,使裝置元件動作,實現保護或監控。
  • 電流互感器銘牌標誌
    額定負荷:確定互感器準確級所依據的負荷值。電流互感器二次K1、K2端子以外的迴路阻抗都是電流互感器的負荷。通常以視在功率伏安或以阻抗歐姆表示。 額定功率因數:二次額定負荷阻抗的有功部分與額定阻抗之比。 準確度等級:在規定使用條件下,互感器的誤差在該等級規定的限值之內電力工程中計量常用的等級有0.2、0.5、0.2S、0.5S等。
  • 電流檢測電路的實現方法及常見問題探討
    1引言本文主要探討了在電流檢測中常遇見的電流互感器飽和、副邊電流下垂的問題,並且介紹了電流檢測電路的實現方法。2電流檢測電路的實現電流檢測電路的實現方法主要有兩類:電阻檢測(resistivesensing)和電流互感器(currentsensetransformer)檢測。