三極體放大電路基本原理舉例說明

2020-11-29 電子產品世界

  以NPN型矽三極體為例,我們把從基極B流至發射極E的電流叫做基極電流Ib;把從集電極C流至發射極E的電流叫做集電極電流Ic。這兩個電流的方向都是流出發射極的,所以發射極E上就用了一個箭頭來表示電流的方向。

本文引用地址:http://www.eepw.com.cn/article/201606/293386.htm

  

 

  三極體的放大作用就是:集電極電流受基極電流的控制(假設電源能夠提供給集電極足夠大的電流的話),並且基極電流很小的變化,會引起集電極電流很大的變化,且變化滿足一定的比例關係:集電極電流的變化量是基極電流變化量的β倍,即電流變化被放大了β倍,所以我們把β叫做三極體的放大倍數(β一般遠大於1,例如幾十,幾百)。如果我們將一個變化的小信號加到基極跟發射極之間,這就會引起基極電流Ib的變化,Ib的變化被放大後,導致了Ic很大的變化。如果集電極電流Ic是流過一個電阻R的,那麼根據電壓計算公式U=R*I可以算得,這電阻上電壓就會發生很大的變化。我們將這個電阻上的電壓取出來,就得到了放大後的電壓信號了。

  2使用偏置電路編輯三極體在實際的放大電路中使用時,還需要加合適的偏置電路。這有幾個原因:

  首先是由於三極體BE結的非線性(相當於一個二極體),基極電流必須在輸入電壓大到一定程度後才能產生(對於矽管,常取0.7V)。當基極與發射極之間的電壓小於0.7V時,基極電流就可以認為是0。但實際中要放大的信號往往遠比0.7V要小,如果不加偏置的話,這麼小的信號就不足以引起基極電流的改變(因為小於0.7V時,基極電流都是0)。如果我們事先在三極體的基極上加上一個合適的電流(叫做偏置電流,上圖中那個電阻Rb就是用來提供這個電流的,所以它被叫做基極偏置電阻),那麼當一個小信號跟這個偏置電流疊加在一起時,小信號就會導致基極電流的變化,而基極電流的變化,就會被放大並在集電極上輸出。

  另一個原因就是輸出信號範圍的要求,如果沒有加偏置,那麼只有對那些增加的信號放大,而對減小的信號無效(因為沒有偏置時集電極電流為0,不能再減小了)。而加上偏置,事先讓集電極有一定的電流,當輸入的基極電流變小時,集電極電流就可以減小;當輸入的基極電流增大時,集電極電流就增大。這樣減小的信號和增大的信號都可以被放大了。

  三極體的飽和情況。像上面那樣的圖,因為受到電阻Rc的限制(Rc是固定值,那麼最大電流為U/Rc,其中U為電源電壓),集電極電流是不能無限增加下去的。當基極電流的增大,不能使集電極電流繼續增大時,三極體就進入了飽和狀態。一般判斷三極體是否飽和的準則是:Ib*β〉Ic。進入飽和狀態之後,三極體的集電極跟發射極之間的電壓將很小,可以理解為一個開關閉合了。這樣我們就可以拿三極體來當作開關使用:當基極電流為0時,三極體集電極電流為0(這叫做三極體截止),相當於開關斷開;當基極電流很大,以至於三極體飽和時,相當於開關閉合。如果三極體主要工作在截止和飽和狀態,那麼這樣的三極體我們一般把它叫做開關管。

  如果我們在上面這個圖中,將電阻Rc換成一個燈泡,那麼當基極電流為0時,集電極電流為0,燈泡滅。如果基極電流比較大時(大於流過燈泡的電流除以三極體的放大倍數β),三極體就飽和,相當於開關閉合,燈泡就亮了。由於控制電流只需要比燈泡電流的β分之一大一點就行了,所以就可以用一個小電流來控制一個大電流的通斷。如果基極電流從0慢慢增加,那麼燈泡的亮度也會隨著增加(在三極體未飽和之前)。

  但是在實際使用中要注意,在開關電路中,飽和狀態若在深度飽和時會影響其開關速度,飽和電路在基極電流乘放大倍數等於或稍大於集電極電流時是淺度飽和,遠大於集電極電流時是深度飽和。因此我們只需要控制其工作在淺度飽和工作狀態就可以提高其轉換速度。

  對於PNP型三極體,分析方法類似,不同的地方就是電流方向跟NPN的剛好相反,因此發射極上面那個箭頭方向也反了過來——變成朝裡的了。


相關焦點

  • 三極體放大電路原理
    本文引用地址:http://www.eepw.com.cn/article/201706/349836.htm三極體放大電路原理一、放大電路的組成與各元件的作用
  • 三極體的結構,三極體的工作原理,三極體的三种放大電路電路圖
    打開APP 三極體的結構,三極體的工作原理,三極體的三种放大電路電路圖 發表於 2017-05-10 16:26:04   三極體,全稱應為半導體三極體,也稱雙極型電晶體、晶體三極體,是一種控制電流的半導體器件其作用是把微弱信號放大成幅度值較大的電信號, 也用作無觸點開關。晶體三極體,是半導體基本元器件之一,具有電流放大作用,是電子電路的核心元件。
  • 三極體放大電路,偏置電路工作原理解說,三極體電路設計基礎
    放大電路在電工電子電路中隨處可見,因此掌握放大電路基礎是有必要的。,通常使用的是電流負反饋偏置電路,本文主要講解偏置電路穩定工作原理。Ie:三極體發射極電流。Ub:三極體基極電壓。Ube:三極體基極發射極電壓。R1、R2:稱為基極分壓電阻,為電路核心放大器件三極體提供基極電流。當基極電流(Ib)變化時,Ub(R2兩端的電壓)基本保持不變。
  • 【電子大講堂】三極體基本放大電路解析
    我們僅以NPN三極體的共發射極放大電路為例來說明一下三極體放大電路的基本原理。下面的分析僅對於NPN型矽三極體。如上圖所示,我們把從基極B流至發射極E的電流叫做基極電流Ib;把從集電極C流至發射極E的電流叫做集電極電流Ic。這兩個電流的方向都是流出發射極的,所以發射極E上就用了一個箭頭來表示電流的方向。
  • 三極體的放大原理
    我們知道晶體三極體具有電壓、電流放大功能,有飽和、放大、截止三個工作區,有共射、共基、共集三種基本接法,其輸入、輸出信號隨接法不同而相位不同
  • 三極體放大原理的理解
    三極體在電子電路中扮演著十分重要的作用,其中對信號的放大是它的主要功能之一,比如在各种放大電路中三極體就是擔負著對輸入進來的信號進行放大作用的
  • 解析基本放大電路概念,工作原理,工作特點
    基本放大電路的概念及工作原理   基本放大電路一般是指有一個三級管和場效應管組成的放大電路。   其中基本放大電路共有三種組態:共發射極放大電路、共集電極放大電路和共基極放大電路,如圖1所示。
  • 三極體的三種基本組態放大電路,放大倍數應該怎麼算?
    學過模電的朋友應該對三極體或者場效應管的放大電路(本文所說的放大電路均指電壓放大)不會感到陌生吧,這可是模電中的重點,但是也是難點,自己知道很重要,就是搞不明白怎麼回事,沒關係這次就以三極體放大電路的三種組態為例給大家簡單說一下放大電路的放大倍數計算公式。
  • 三極體基本放大電路解析
    下面說說三極體的飽和情況。像上面那樣的圖,因為受到電阻Rc的限制(Rc是固定值,那麼最大電流為U/Rc,其中U為電源電壓),集電極電流是不能無限增加下去的。當基極電流的增大,不能使集電極電流繼續增大時,三極體就進入了飽和狀態。一般判斷三極體是否飽和的準則是:Ib*β〉Ic。
  • 非線性電路的分析方法_非線性電路分析舉例
    在三極體的輸出特性曲線上,畫直流通路得出的且與負載電阻有關的直流負載線,它與電晶體的某條輸出特性曲線的交點Q稱為放大電路的靜態工作點,如圖2所示。 2、微變等效電路分析法 微變等效電路法,就是把非線性電路線性化。在放大電路中,把電晶體等效為一個線性器件。等效的條件是電晶體在小信號(微變量)情況下工作。
  • 簡單地介紹三極體在放大狀態下的基本原理
    簡單地介紹三極體在放大狀態下的基本原理 胡薇 發表於 2018-04-27 09:29:51 三極體也稱雙極型電晶體(Bipolar Junction Transistor
  • PNP 和NPN型三極體,放大電路工作原理,類似水龍頭?
    一、了解三極體三極體:是三個引腳的放大器件的統稱;全稱為半導體三極體,也稱雙極型電晶體、晶體三極體等;是電子電路的核心元件,具有電流放大作用,可通過放大微弱電信號;因此常被用作無觸點開關。兩個P型中間夾N型組合我們稱作PNP型三極體;同理兩個N型中間夾P型就是NPN型三極體;如下圖所示:三、工作原理:N型和P型半導體按照特定的工藝要求組合形成PN結,然後在PN結、N型和P型這三塊材料分別引出三個電極發射極E、集電極C和基極B。
  • 三極體放大電路的放大倍數應該怎麼算
    學過模電的朋友應該對三極體或者場效應管的放大電路不會感到陌生吧,這可是模電中的重點,但是也是難點,自己知道很重要,就是搞不明白怎麼回事,沒關係這次就以三極體放大電路的三種組態為例給大家簡單說一下放大電路的放大倍數計算公式。
  • 三極體放大電路中偏置電路是如何計算確定的
    打開APP 三極體放大電路中偏置電路是如何計算確定的 發表於 2019-07-10 17:39:14 三極體放大電路需要合理選擇偏置電路,才能建立正常的直流工作點,才能將微弱的交流信號在電路中疊加完成放大作用。
  • 基於Multisim的三極體放大電路仿真分析
    0 引言本文引用地址:http://www.eepw.com.cn/article/175239.htm放大電路是構成各種功能模擬電路的基本電路,能實現對模擬信號最基本的處理--放大,因此掌握基本的放大電路的分析對電子電路的學習起著至關重要的作用。
  • 基本共射放大電路工作原理以及共射放大電路的組成
    打開APP 基本共射放大電路工作原理以及共射放大電路的組成 發表於 2017-05-09 16:14:58    基本共射放大電路的工作原理   組成:電路結構   VT 電流放大元件   UCC 直流電源。
  • 電路設計必備模電知識:三極體的基本用法
    三極體是模擬電路最常用的基礎知識,三極體是電路設計中應用非常廣泛的半導體元器件,若三極體都不會用,模電相當於白學了。三極體的放大倍數與其物理結構有關,選擇三極體時放大倍數β是必須考慮的重要技術指標之一,三極體的電流方向以及三個極之間的電流關係如下圖,IC=βIB,IE=IB+IC三極體有飽和、放大和截止三個工作區間,下面介紹一些常見的用法;(1)驅動放大,一般單片機、DSP、ARM、CPLD/FPGA等CPU的IO口驅動電流比較弱,無法直接驅動負載
  • 三極體各參數如何選取問題(共射極放大電路)
    時,需要注意需要了解三極體的幾個參數,一個是Vceo,飽和Ic,飽和Vce,集電極極限電流Icm,極限功率Pcm,三極體放大倍數hFE,注意在選取三極體時,集電極輸出電流不能超過集電極極限電流Icm,否則會燒壞三極體。
  • 三極體基本知識及電子電路圖詳解
    "晶體三極體,是半導體基本元器件之一,具有電流放大作用,是電子電路的核心元件" 在電子元件家族中,三極體屬於半導體主動元件中的分立元件。 本文所述的是狹義三極體,它有很多別稱: 三極體的發明 晶體三極體出現之前是真空電子三極體在電子電路中以放大、開關功能控制電流。
  • 三極體的基本工作原理,這個講的很全!
    晶體三極體是p型和n型半導體的有機結合,兩個pn結之間的相互影響,使pn結的功能發生了質的飛躍,具有電流放大作用。晶體三極體按結構粗分有npn型和pnp型兩種類型。如圖2-17所示,(用Q、VT、PQ表示)三極體之所以具有電流放大作用,首先,製造工藝上的兩個特點: