構造樣本數據
import numpy as np
np.random.seed(0)x = np.random.random((100,))y = np.random.random((100,))1、歐幾裡得距離
(代碼太長往左滑哦)
from sklearn.metrics import pairwise_distancesfrom sklearn.metrics.pairwise import euclidean_distances
distance = pairwise_distances([x], [y], metric='euclidean')distance = euclidean_distances([x], [y])print(distance)2、餘弦相似度
(代碼太長往左滑哦)
from sklearn.metrics.pairwise import cosine_distances
distance = pairwise_distances([x], [y], metric='cosine')distance = cosine_distances([x], [y])print(distance)3、曼哈頓距離
(代碼太長往左滑哦)
distance = pairwise_distances([x], [y], metric='manhattan')print(distance)4、閔可夫斯基距離
(代碼太長往左滑哦)
distance = pairwise_distances([x], [y], metric='minkowski')print(distance)5、切比雪夫距離
(代碼太長往左滑哦)
distance = pairwise_distances([x], [y], metric='chebyshev')print(distance)6、Jaccard相似係數
(代碼太長往左滑哦)
distance = pairwise_distances([x], [y], metric='jaccard')print(distance)7、皮爾森相關係數
(代碼太長往左滑哦)
distance = pairwise_distances([x], [y], metric='correlation')distance = np.corrcoef(x, y)print(distance)加小編微信(備註:機器學習)
拉你入「機器學習交流群」