經過變壓器變壓後的仍然是交流電,需要轉換為直流電才能提供給後級電路,這個轉換電路就是整流電路。在直流穩壓電源中利用二極體的單項導電特性,將方向變化的交流電整流為直流電。
(1)半波整流電路
半波整流電路見下圖。其中B1是電源變壓器,D1是整流二極體,R1是負載。B1次級是一個方向和大小隨時間變化的正弦波電壓,波形如圖2所示。0~π期間是這個電壓的正半周,這時B1次級上端為正下端為負,二極體D1正嚮導通,電源電壓加到負載R1上,負載R1中有電流通過;π~2π期間是這個電壓的負半周,這時B1次級上端為負下端為正,二極體D1反向截止,沒有電壓加到負載R1上,負載R1中沒有電流通過。在 2π~3π、3π~4π等後續周期中重複上述過程,這樣電源負半周的波形被「削」掉,得到一個單一方向的電壓,波形如圖3所示。由於這樣得到的電壓波形大小還是隨時間變化,我們稱其為脈動直流。
圖2半波整流電路圖
圖3半波整流波形圖
設B1次級電壓為E,理想狀態下負載R1兩端的電壓可用下面的公式求出:
整流二極體D1承受的反向峰值電壓為:
由於半波整流電路只利用電源的正半周,電源的利用效率非常低,所以半波整流電路僅在高電壓、小電流等少數情況下使用,一般電源電路中很少使用。
(2)全波整流電路
由於半波整流電路的效率較低,於是人們很自然的想到將電源的負半周也利用起來,這樣就有了全波整流電路。全波整流電路圖見圖4。相對半波整流電路,全波整流電路多用了一個整流二極體D2,變壓器B1的次級也增加了一個中心抽頭。這個電路實質上是將兩個半波整流電路組合到一起。在0~π期間B1次級上端為正下端為負,D1正嚮導通,電源電壓加到R1上,R1兩端的電壓上端為正下端為負,其波形如圖5所示,其電流流向如圖6所示;在π~2π期間B1次級上端為負下端為正,D2正嚮導通,電源電壓加到R1上,R1兩端的電壓還是上端為正下端為負,其波形如圖5所示,其電流流向如圖7所示。在2π~3π、3π~4π等後續周期中重複上述過程,這樣電源正負兩個半周的電壓經過D1、D2整流後分別加到R1兩端,R1上得到的電壓總是上正下負,其波形如圖5所示。
圖4全波整流電路圖
圖5全波整流波形圖
圖6全波整流電路電流流向圖
圖7全波整流電路電流流向圖
設B1次級電壓為E,理想狀態下負載R1兩端的電壓可用下面的公式求出:
整流二極體D1和D2承受的反向峰值電壓為:
全波整流電路每個整流二極體上流過的電流只是負載電流的一半,比半波整流小一倍。
(3)橋式整流電路
由於全波整流電路需要特製的變壓器,製作起來比較麻煩,於是出現了一種橋式整流電路。這種整流電路使用普通的變壓器,但是比全波整流多用了兩個整流二極體。由於四個整流二極體連接成電橋形式,所以稱這種整流電路為橋式整流電路。
圖8橋式整流電路圖
由圖9可以看出在電源正半周時,B1次級上端為正,下端為負,整流二極體D4和D2導通,電流由變壓器B1次級上端經過D4、R1、D2回到變壓器B1次級下端;由圖10可以看出在電源負半周時,B1次級下端為正,上端為負,整流二極體D1和D3導通,電流由變壓器B1次級下端經過 D1、R1、D3回到變壓器B1次級上端。R1兩端的電壓始終是上正下負,其波形與全波整流時一致。
圖9橋式整流電路電流流向圖
圖10橋式整流電路電流流向圖
設B1次級電壓為E,理想狀態下負載R1兩端的電壓可用下面的公式求出:
整流二極體D1和D2承受的反向峰值電壓為:
橋式整流電路每個整流二極體上流過的電流是負載電流的一半,與全波整流相同。
通常情況下橋式整流電路都簡化成圖11的形式。
圖11橋式整流簡化電路圖
(4)倍壓整流電路
前面介紹的三種整流電路輸出電壓都小於輸入交流電壓的有效值,如果需要輸出電壓大於輸入交流電壓有效值時可以採用倍壓電路,見圖12。由圖13可知,在電源的正半周,變壓器B1次級上端為正下端為負,D1導通,D2截止,C1通過D1充電,充電後C1兩端電壓接近B1次級電壓峰值,方向為左端正右端負;由圖14可知,在電源的負半周,變壓器B1次級上端為負下端為正,D1截止,D2導通,C2通過D1充電,充電後C2兩端電壓接近C1兩端電壓與B1次級電壓峰值之和,方向為下端正上端負。由於負載R1與C1並聯,當R1足夠大時,R1兩端的電壓即為接近2倍B1次級電壓。
圖12二倍壓整流電路圖
圖13二倍壓整流電流流向圖
圖14二倍壓整流電流流向圖
二倍壓整流電路還有另外一種形式的畫法,見圖15,其原理與圖12完全一致,只是表現形式不一樣。
圖15二倍壓整流電路圖(另一種形式)
二倍壓電路還可以很容易的擴展為n倍壓電路,具體電路見圖16。
圖16 n倍壓整流電路圖