發表於 2018-01-31 08:41:15
二極體又稱晶體二極體,簡稱二極體(diode),另外,還有早期的真空電子二極體;它是一種能夠單向傳導電流的電子器件。在半導體二極體內部有一個PN結兩個引線端子,這種電子器件按照外加電壓的方向,具備單向電流的傳導性。一般來講,晶體二極體是一個由p型半導體和n型半導體燒結形成的p-n結界面。在其界面的兩側形成空間電荷層,構成自建電場。當外加電壓等於零時,由於p-n 結兩邊載流子的濃度差引起擴散電流和由自建電場引起的漂移電流相等而處於電平衡狀態,這也是常態下的二極體特性。
二極體是最常用的電子元件之一,它最大的特性就是單向導電,也就是電流只可以從二極體的一個方向流過,二極體的作用有整流電路,檢波電路,穩壓電路,各種調製電路,主要都是由二極體來構成的,其原理都很簡單,正是由於二極體等元件的發明,才有我們現 在豐富多彩的電子信息世界的誕生,既然二極體的作用這麼大那麼我們應該如何去檢測這個元件呢,其實很簡單只要用萬用表打到電阻檔測量一下反向電阻如果很小就說明這個二極體是壞的,反向電阻如果很大這就說明這個二極體是好的。對於這樣的基礎元件我們應牢牢掌握住他的作用原理以及基本電路,這樣才能為以後的電子技術學習打下良好的基礎。
晶體二極體為一個由p型半導體和n型半導體形成的pn結,在其界面處兩側形成空間電荷層,並建有自建電場。當不存在外加電壓時,由於pn結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處於電平衡狀態。當外界有正向電壓偏置時,外界電場和自建電場的互相抑消作用使載流子的擴散電流增加引起了正向電流。當外界有反向電壓偏置時,外界電場和自建電場進一步加強,形成在一定反向電壓範圍內與反向偏置電壓值無關的反向飽和電流I0。當外加的反向電壓高到一定程度時,pn結空間電荷層中的電場強度達到臨界值產生載流子的倍增過程,產生大量電子空穴對,產生了數值很大的反向擊穿電流,稱為二極體的擊穿現象。pn結的反向擊穿有齊納擊穿和雪崩擊穿之分。
用來表示二極體的性能好壞和適用範圍的技術指標,稱為二極體的參數。不同類型的二極體有不同的特性參數。對初學者而言,必須了解以下幾個主要參數:
是指二極體長期連續工作時,允許通過的最大正向平均電流值,其值與PN結面積及外部散熱條件等有關。因為電流通過管子時會使管芯發熱,溫度上升,溫度超過容許限度(矽管為141左右,鍺管為90左右)時,就會使管芯過熱而損壞。所以在規定散熱條件下,二極體使用中不要超過二極體最大整流電流值。例如,常用的IN4001-4007型鍺二極體的額定正向工作電流為1A。
加在二極體兩端的反向電壓高到一定值時,會將管子擊穿,失去單向導電能力。為了保證使用安全,規定了最高反向工作電壓值。例如,IN4001二極體反向耐壓為50V,IN4007反向耐壓為1000V。
反向電流是指二極體在常溫(25℃)和最高反向電壓作用下,流過二極體的反向電流。反向電流越小,管子的單方向導電性能越好。值得注意的是反向電流與溫度有著密切的關係,大約溫度每升高10℃,反向電流增大一倍。例如2AP1型鍺二極體,在25℃時反向電流若為250uA,溫度升高到35℃,反向電流將上升到500uA,依此類推,在75℃時,它的反向電流已達8mA,不僅失去了單方向導電特性,還會使管子過熱而損壞。又如,2CP10型矽二極體,25℃時反向電流僅為5uA,溫度升高到75℃時,反向電流也不過160uA。故矽二極體比鍺二極體在高溫下具有較好的穩定性。
二極體特性曲線靜態工作點Q附近電壓的變化與相應電流的變化量之比。
Fm是二極體工作的上限頻率。因二極體與PN結一樣,其結電容由勢壘電容組成。所以Fm的值主要取決於PN結結電容的大小。若是超過此值。則單向導電性將受影響。
αuz指溫度每升高一攝氏度時的穩定電壓的相對變化量。uz為6v左右的穩壓二極體的溫度穩定性較好
理想二極體:就是正向壓降為0,反向漏電流為0的二極體,這種二極體只存在於理論研究中;
理想二極體是一種假設,根據題目要求假設,如為沒有壓降,沒有損耗,反向不會擊穿等理想狀態。而實際二極體是達不到的。目的是為了突出重點,去除次要問題。
打開APP閱讀更多精彩內容
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴