開關電源技術中最常見的一些電源模塊

2021-01-21 電子發燒友

  高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源模塊技術的迅速發展。八十年代,計算機全面採用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

  計算機技術的發展,提出綠色電腦和綠色電源模塊。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源係指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日「能源之星"計劃規定,桌上型個人電腦或相關的外圍設備,在睡眠狀態下的耗電量若小於30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

2 通信用高頻開關電源模塊

  通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz範圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

  因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中採用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

3 直流-直流(DC/DC)變換器 

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用於無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,並同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源), 同時還能起到有效地抑制電網側諧波電流噪聲的作用。 

通信電源的二次電源DC/DC變換器已商品化,模塊採用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和採用新的電路拓撲結構,目前已有一些公司研製生產了採用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。 

4 不間斷電源(UPS) 

不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。 

現代UPS普遍了採用脈寬調製技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬體技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。 

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lVA、2kVA、3kVA等多種規格的產品。『

5 變頻器電源

變頻器電源主要用於交流電機的變頻調速,其在電氣傳動系統中佔據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均採用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然後由大功率電晶體或IGBT組成的PWM高頻變換器, 將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似於正弦波,用於驅動交流異步電動機實現無級調速。 

國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用於空調器中。至1997年,其佔有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內於90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成高潮。變頻空調除了變頻電源外,還要求有適合於變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研製的進一步發展方向。 

6 高頻逆變式整流焊機電源 

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由於IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。 

逆變焊機電源大都採用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合, 整流濾波後成為穩定的直流,供電弧使用。 

由於焊機電源的工作條件惡劣,頻繁的處於短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。採用微處理器做為脈衝寬度調製(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。 

國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節範圍5~300A,重量29kg。 

7 大功率開關型高壓直流電源 

大功率開關型高壓直流電源廣泛應用於靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。 

自從70年代開始,日本的一些公司開始採用逆變技術,將市電整流後逆變為3kHz左右的中頻,然後升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司採用功率電晶體做主開關元件,將電源的開關頻率提高到20kHz以上。並將乾式變壓器技術成功的應用於高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。 

國內對靜電除塵高壓直流電源進行了研製,市電經整流變為直流,採用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然後由高頻變壓器升壓,最後整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。 

8 電力有源濾波器 

傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和幹擾,同時還出現裝置網側功率因數惡化的現象,即所謂「電力公害」,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。 

電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流; (2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。 

9 分布式開關電源供電系統 

分布式電源供電系統採用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研製壓力,提高生產效率。 

八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器並聯技術的研究上。八十年代中後期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代後期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。 

分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸採納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。 

10 現狀和發展:

現代電力電子技術是開關電源技術發展的基礎。隨著新型電力電子器件和適於更高開關頻率的電路拓撲的不斷出現,現代電源技術將在實際需要的推動下快速發展。在傳統的應用技術下,由於功率器件性能的限制而使開關電源的性能受到影響。為了極大發揮各種功率器件的特性,使器件性能對開關電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術,可使功率開關工作在零電壓或零電流狀態,從而可大大的提高工作頻率,提高開關電源工作效率,設計出性能優良的開關電源。電力電子及開關電源技術因應用需求不斷向前發展,新技術的出現又會使許多應用產品更新換代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數位化、綠色化等的實現,將標誌著這些技術的成熟,實現高效率用電和高品質用電相結合。這幾年,隨著通信行業的發展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產值需求的電力操作電源系統的國內市場正在啟動,並將很快發展起來。還有其它許多以開關電源技術為核心的專用電源、工業電源正在等待著人們去開發。

相關焦點

  • 電源模塊,電源模塊是什麼意思
    因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中採用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。
  • 明緯開關電源常見故障_明緯開關電源的維修技巧
    明緯開關電源常見故障_明緯開關電源的維修技巧 網絡整理 發表於 2020-04-26 16:24:38   明緯開關電源常見故障
  • 高頻開關電源系統中整流模塊的設計方案
    隨著我國科技生產水平的不斷提高, 各行各業對供電質量的要求越來越高, 而智能高頻開關電源作為一種繼電保護裝置和控制迴路裝置, 為生活和生產中的供電的可靠性提供了有力的保障。當市電供電中斷時還可以作為後備電源, 所以說智能高頻開關電源是對供電質量保證的重要組成部分之一。
  • 高頻開關電源系統中整流模塊的功能設計
    引 言本文引用地址:http://www.eepw.com.cn/article/178530.htm  隨著我國科技生產水平的不斷提高, 各行各業對供電質量的要求越來越高, 而智能高頻開關電源作為一種繼電保護裝置和控制迴路裝置, 為生活和生產中的供電的可靠性提供了有力的保障
  • 松滋RD10A230C電源模塊高頻開關電源價格
    松滋RD10A230C電源模塊高頻開關電源價格在自動控制方式下,模塊的輸出電壓、限流點、開關機均由監控模塊進行控制,人工無法進行幹預。如果模塊連接到合閘母線上對電池進行充電,一般應設置為自動控制方式。在手動控制方式下,模塊的輸出電壓由上述介紹的手動調壓按鈕進行調節。模塊的輸出電壓、限流點和開關機等均不受監控模塊控制,但可以將模塊的運行參數上報給監控模塊。
  • 開關電源的常見故障和維修技巧
    目前,開關電源已逐漸進入我們的日常生活和生產中,它以節能,環保,性價比高等優點,很快取代了以往傳統的那種既笨重效率又低的「線性電源」,很快被人們所接受。本文就著重介紹了開關電源的常見故障、注意事項以及維修技巧。
  • 開關電源維修教程_開關電源維修從入門到精通_開關電源故障檢修方法
    開關電源是各種電子設備必不可缺的組成部分,其性能優劣直接關係到電子設備的技術指標及能否安全可靠地工作。由於深圳開關電源內部關鍵元器件工作在高頻開關狀態,功耗小,轉化率高,且體積和重量只有線性電源的20%—30%,故目前它已成為穩壓電源的主流產品。
  • 開關電源常見的使用問題以及如何排除故障
    打開APP 開關電源常見的使用問題以及如何排除故障 發表於 2018-12-07 10:54:23 開關電源以高集成度、高可靠性、簡化設計等多重優勢,受到許多產品設計者的青睞,但其容易上手操作簡單的優點使許多產品設計者在使用中出現一些問題,因此本文就從這些角度出發,通過分析開關電源常見的使用問題以及如何排除故障進行詳細的闡述,希望對我們的日常產品設計有所幫助。
  • 模塊電源中平面變壓器的設計與應用
    摘要:本文基於開關電源中變壓器的工作原理和平面變壓器自身特點,對模塊型開關電源中的平面變壓器的設計、加工、工藝和應用進行了全面研究。明確指出平面變壓器在各種常見電路拓撲中的適用性問題,給出了平面變壓器設計的參數計算過程,並進行了具體實例的參數計算。
  • 開關電源DCDC模塊如何進行PCB設計
    打開APP 開關電源DCDC模塊如何進行PCB設計 凡億PCB培訓 發表於 2020-10-23 11:57:19 1.開關電源概述
  • 乾貨| GaN在開關電源設計中的應用
    思考這類問題時通常的思路是在現有組件中尋找解決方案—GaN開關,Si開關驅動器,高速開關控制器,以及功率電感器、變壓器和電容器等總體設計中的部件。生產電源產品的集成電路(IC) 製造商如果能用共同設計的器件提供系統級解決方案,甚至在模塊封裝中集成多個晶片,就能夠大大提高電源設計可能性。
  • dcdc電源模塊並聯均流
    例如車載直流電源上接的DC/DC變換器是把高壓的直流電變換為低壓的直流電。   什麼是DC(Direct Current)呢?家庭用的220V電源是交流電源(AC)。若通過一個轉換器能將一個直流電壓 (3.0V)轉換成其他的直流電壓(1.5V或5.0V),我們稱這個轉換DCDC原理器為DC/DC轉換器,或稱之為開關電源或開關調整器。
  • 高頻開關電源的原理_高頻開關電源的作用
    高頻開關電源工作原理及特點有哪些?開瑞小編為你介紹:開關K以必定的時刻間隔重複地接通和斷開,在開關K接通時,輸進電源E經過開關K和濾波電路供給給負載RL,在全部開關接通期間,電源E向負載供給能量;當開關K斷開時,輸進電源E便中斷了能量的供給。
  • 示波器在開關電源分析中的應用
    電源是所有電子產品不可或缺的組成部分,電源分為開關電源、線性電源等類型,其中開關電源已經成為數字計算、網絡通信開關電源的好壞關係到產品的整體性能。因此,在研發和生產測試中對於電源的精確分析顯得尤為重要。SIGLENT推出的SDS2000超級螢光示波器配備強大的電源分析模塊,支持絕大部分電源性能指標的精確測試測量。下面將通過分析電源板輸入模塊,給大家詳細介紹SDS2000的電源分析功能。
  • 如何降低開關電源中產生的EMI輻射
    開關電源意味著器件內部有電子開關,EMI可通過它產生輻射。 本文將介紹開關電源中EMI的來源以及降低EMI的方法或技術。本文還將向您展示電源模塊(控制器、高側和低側FET及電感器封裝為一體)如何幫助降低EMI。 開關電源中EMI的來源 首先,必須尊重物理定律。根據麥克斯韋方程組,交流電可產生電磁場。
  • 介紹開關電源PCB設計中的走線技巧
    文章主要是討論和分析開關電源印製板布線原則、開關電源印製板銅皮走線的一些事項、開關電源印製板大電流走線的處理以及反激電源反射電壓的一個確定因素等方面
  • 開關電源如何判斷起振_開關電源不起振原因分析
    開關電源是利用現代電力電子技術,控制開關管開通和關斷的時間比率,維持穩定輸出電壓的一種電源,開關電源一般由脈衝寬度調製(PWM)控制IC和MOSFET構成。隨著電力電子技術的發展和創新,使得開關電源技術也在不斷地創新。目前,開關電源以小型、輕量和高效率的特點被廣泛應用幾乎所有的電子設備,是當今電子信息產業飛速發展不可缺少的一種電源方式。
  • 基於開關電源的多電源並聯控制系統設計
    摘要:本文研製一個基於開關電源的多電源的並聯控制系統設計方案,採用UC3825和UC3907作為系統和均流控制系統的核心晶片,同時採用移相式全橋變換器的拓撲結構作為逆變電路,實驗仿真結果表明它基本達到設計要求,具有輸出電壓可調
  • 淺談開關電源和線性電源的區別
    對於電源效率和安裝體積有要求的地方用開關電源為佳,對於電磁幹擾和電源純淨性有要求的地方(例如電容漏電檢測)多選用線性電源。另外當電路中需要作隔離的時候現在多數用DC-DC來做對隔離部分供電(DC-DC從其工作原理上來說就是開關電源)。還有,開關電源中用到的高頻變壓器可能繞制起來比較麻煩。
  • 介紹幾個模塊電源中常用的MOSFET驅動電路
    MOSFET因導通內阻低、開關速度快等優點被廣泛應用於開關電源中。MOSFET的驅動常根據電源IC和MOSFET的參數選擇合適的電路。下面一起探討MOSFET用於開關電源的驅動電路。在使用MOSFET設計開關電源時,大部分人都會考慮MOSFET的導通電阻、最大電壓、最大電流。