乾粉吸入劑配方(一)

2021-01-21 吸入製劑

乾粉吸入劑配方

Martin J Telko andAnthony J Hickey PhD DSc

         

藥物產品將藥理活性與藥物性質相結合。理想的性能特徵是物理和化學穩定性,易於處理,準確和可重複地傳遞到目標器官,以及在現場的可用性。對於乾粉吸入劑(DPI),這些目標可以通過合適的粉末配方,高效計量系統和精心挑選的設備來滿足。本篇綜述將重點介紹DPI配方和發展進程。大多數DPI製劑是由與較大載體顆粒混合的微粉化藥物組成,這樣可以增強流動、減少聚集並有助於分散。內在物理化學性質、粒度、形狀、表面積和形態的組合影響相互作用力和空氣動力學性質,這些因素反過來又決定了流化,分散,輸送到肺部以及在周邊氣道中的沉積。當DPI被促動時,製劑被流化並進入患者的氣道。在吸氣氣流的影響下,藥物顆粒與載體顆粒分離,並被攜帶深入肺部,而較大的載體顆粒撞擊口咽表面並被清除。如果作用在粉末上的內聚力太強,則氣流的剪切可能不足以將藥物與載體顆粒分離,這導致低的沉積效率。隨著對氣溶膠和固體物理學的研究深入,配方研究也從經驗活動轉向以科學基礎為根本。

[Respir Care 2005;50(9):1209–1227. © 2005Daedalus Enterprises]

         

介紹INTRODUCTION

           

製劑開發包括將活性藥物成分併入藥物產品中的一系列方法。雖然生物活性是成功劑型的先決條件,但它不是唯一的決定因素。諸如穩定性、可加工性、遞送和目標器官的可到達性等因素有助於有效的藥物系統。這些因素的優化是一項關鍵的發展任務,最終產品通常是製藥與實用(即經濟/工程)考慮之間的妥協。製劑開發具有挑戰性,因為具有藥理活性的分子經常顯示出差的物理化學性質。事實上,賦予藥理活性(例如,高受體親和力)的相同分子特徵經常限制化合物的藥物效用,使其難以甚至不適合遞送。尤其是對於由高通量篩選法得到的許多化合物。

          

開發用於吸入的藥物是一個特別的挑戰,因為它涉及製劑的製備和氣溶膠分散裝置的選擇。肺具有比其他遞送部位(例如胃腸道或血液)更低的緩衝能力,這樣限制了可以增強遞送結果的賦形劑的範圍。一個額外的變量,特別是肺部輸送,是患者,無論是在吸入模式和呼吸道解剖學和生理學方面。相比吞咽片劑,還有更多的因素影響吸入氣溶膠。給予個體或患者群體的遞送劑量的變異性可以是顯著的。因此難以確保可重現的治療效果。

            

用吸入器治療呼吸系統疾病需要向肺部輸送足夠的藥物以產生治療反應。為了獲得最佳療效,藥物給藥必須可靠,可重現和方便。該目標可以通過配方、計量和吸入器設計策略的組合來實現。設備設計和選擇的技術和臨床方面已在其他地方進行了廣泛的回顧。以下討論概述了乾粉吸入器(DPI)配方的設計,以實現遞送目標。將討論製劑開發和表徵策略和加工方法,重點是對穩定性、製造可行性、遞送和生物利用度的影響。為此,了解乾粉物理和表面化學是至關重要的。本文重點介紹廣泛的概念和例子,只需少量使用方程式。              

              

乾粉吸入劑DRY POWDER INHALERS

DPI的發展Development of theDPI

吸入藥物遞送系統可以分為3個主要類別:壓力定量吸入器(pMDI),DPI和霧化器,每個類別具有獨特的長處和短處。這種分類是基於分散相和連續介質的物理狀態,在每個類別內,進一步的分化是基於計量、分散或設計的手段。霧化器與pMDI和DPI明顯不同,因為藥物溶解或懸浮在極性液體(通常為水)中。霧化器主要用於醫院和門診部門,通常不用於慢性病管理,因為它們較大且不太方便,並且氣溶膠在長時間內連續輸送。 pMDI和DPI是含有固體藥物,懸浮或溶解在非極性揮發性拋射劑或當患者吸入時被流化的乾粉混合物(DPI)中的推注藥物遞送裝置。各種類型的吸入裝置的臨床表現已經在許多臨床試驗中進行了徹底的檢查,這些臨床試驗已被Barry和O'Callaghan評論和最近由Dolovich等進行了綜述。這些作者得出結論,尚沒有一種裝置是臨床最優良的,裝置選擇應以其他因素為指導,如便利性、成本和患者偏好。

          

pMDI於1956年首次批准,是第一個現代吸入器。全球市場份額約80%,pMDI仍然是應用最廣泛的設備。 DPIs的發展是由於渴望替代pMDIs,減少用作拋射劑的消耗臭氧層物質和溫室氣體(分別含氯氟烴和氫氟烷烴)的排放,並促進大分子和生物技術產品的遞送。同時,DPIs也被證明在解決與其他設備和配方相關的pMDI缺陷方面取得了成功。 DPI更容易使用,具有更穩定和高效的系統。因為pMDI是加壓的,它以高速度發出劑量,這使得口咽更可能發生過早沉積。因此,pMDI需要仔細協調促動和吸入。儘管對其設計進行了改進(例如使用儲霧罐),但是pMDI的不正確使用仍然是普遍存在的問題; Giraud和Roche發現,在皮質類固醇激素治療的患者中,很大比例的促動和吸入協調不良導致哮喘控制減少。由於DPI被患者的吸氣氣流激活,因此它們幾乎不需要或不協調致動和吸入。這通常導致比可比較的pMDI實現的肺遞送更好。

          

由於DPI通常配製成單相固體顆粒共混物,所以從穩定性和加工的方面來看,它們也是優選的。乾粉末處於較低的能量狀態,這降低了化學降解速率和與接觸表面反應的可能性。相比之下,包括推進劑和助溶劑在內的pMDI製劑可以從裝置組分中提取有機化合物。表1總結了DPI(與pMDI相比)的主要優點和缺點。有關氣溶膠輸送裝置演變的更多細節,可以提供極好的評論。              


表1.乾粉吸入器與定量吸入器的比較

乾粉吸入器的優點

環保可持續性,無拋射劑設計

很少或不需要患者協調

配方穩定性

乾粉吸入器的缺點

沉積率取決於患者的吸氣氣流

潛在的劑量均一性問題

開發製造更加複雜/昂貴

在其他綜述進行了研究的幾種新的DPI裝置的開發,以及支氣管擴張劑 - 皮質類固醇組合產品Advair(GlaxoSmithKline,北卡羅來納研究三角園)的商業成功進一步激發了DPIs的興趣和發展。

             

操作原理Principles of Operation

圖1顯示了DPI設計的原理。大多數DPI都含有與較大載體顆粒混合的微粉化藥物,可防止聚集並幫助流動。這些載體顆粒的重要作用在本文稍後討論。乾粉氣溶膠的分散體由靜態粉末床進行。為了產生氣溶膠,顆粒必須移動。運動可以通過幾種機制來實現。被動吸入器使用患者的吸氣流量。當患者促動DPI並吸入時,穿過設備的氣流產生剪切和湍流;將空氣引入粉末床中,靜態粉末混合物流化並進入患者的氣道。在那裡,藥物顆粒與載體顆粒分離並且被深深地攜帶到肺中,而較大的載體顆粒在口咽中衝擊並被清除。因此,通過患者的可變吸氣氣流來確定肺中的沉積。藥物/載體分離不足是DPIs遇到的低沉積效率的主要解釋之一。劑量均一性是一個挑戰DPI的表現。由於顆粒的尺寸和離散性質,因此粉末比液體更受關注。

            

圖1.乾粉吸入器設計原理製劑通常由與計量系統分配的較大載體顆粒混合的微粉化藥物組成。主動或被動分散系統將顆粒遞送到患者的氣道中,其中藥物顆粒與載體顆粒分離並攜帶到肺中。          

            

DPIs採用各種分散機理。雖然大多數DPI是呼吸促動,依靠吸入氣溶膠生成,幾個電力輔助設備(氣動、衝擊力和振動)已經開發或正在開發中。這些裝置正在考慮用於遞送具有狹窄治療窗口的活性藥物。重要的是要注意,這些「主動」吸入器與被動式吸入器不具有相同的限制,並且具有不同的優點/缺點。此外,已經提出,如果通過使用獨立於患者呼吸的分散機制來標準化剪切和湍流,則可以實現高的輸送效率和再現性。因此,主動吸入器可以提供與製劑無關的遞送。目前沒有市售的活性分散體DPI。因此,為了簡潔起見,這裡不討論這些設備;讀者可參考其他文獻。(未完待續)

          

翻譯過程難免疏漏,如有不當之處還請留言告知小編,謝謝~~

           

原文如下

Dry Powder Inhaler Formulation

Martin J Telko andAnthony J Hickey PhD DSc

Adrug product combines pharmacologic activity with pharmaceutical properties.Desirable performance characteristics are physical and chemical stability, easeof processing, accurate and reproducible delivery to the target organ, andavailability at the site of action. For the dry powder inhaler (DPI), thesegoals can be met with a suitable powder formulation, an efficient meteringsystem, and a carefully selected device. This review focuses on the DPIformulation and development process. Most DPI formulations consist ofmicronized drug blended with larger carrier particles, which enhance flow,reduce aggregation, and aid in dispersion. A combination of intrinsicphysicochemical properties, particle size, shape, surface area, and morphologyaffects the forces of interaction and aerodynamic properties, which in turndetermine fluidization, dispersion, delivery to the lungs, and deposition inthe peripheral airways. When a DPI is actuated, the formulation is fluidizedand enters the patient’s airways. Under the influence of inspiratory airflow,the drug particles separate from the carrier particles and are carried deepinto the lungs, while the larger carrier particles impact on the oropharyngealsurfaces and are cleared. If the cohesive forces acting on the powder are toostrong, the shear of the airflow may not be sufficient to separate the drugfrom the carrier particles, which results in low deposition efficiency.Advances in understanding of aerosol and solid state physics and interfacialchemistry are moving formulation development from an empirical activity to afundamental scientific foundation. [Respir Care 2005;50(9):1209–1227. © 2005Daedalus Enterprises]

     

INTRODUCTION

Formulationdevelopment encompasses an array of processes in which an active pharmaceuticalingredient is incorporated into a drug product. While biological activity is aprerequisite for a successful dosage form, it is not the sole determinant.Factors such as stability, processibility,delivery, and availability to thetarget organ contribute to an efficacious pharmaceutical system. Optimizationof these factors is a key development task, and the final product is often acompromise between pharmaceutical and practical (ie, economic/engineering)considerations. Formulation development is challenging because molecules withpharmacologic activity often display poor physicochemical properties. In fact,the same molecular characteristics that confer pharmacologic activity (eg, highreceptor affinity) frequently limit a compound’s pharmaceutical utility, makingit difficult or even unsuitable for delivery.This is particularly true for manyof the compounds that are identified by high-throughput screening methods.

       

Development of pharmaceuticals forinhalation is a particular challenge, as it involves the preparation of aformulation and the selection of a device for aerosol dispersion. The lungshave lower buffering capacity than other delivery sites (eg, thegastrointestinal tract or the blood),which limits the range of excipients thatcould enhance delivery outcomes. An additional variable, unique to pulmonarydelivery, is the patient, both in terms of inhalation mode andrespiratory-tract anatomy and physiology. There are many more ways toadminister an inhaled aerosol than there are to swallow a tablet. Variabilityin delivered dose to an individual or a population of patients can besubstantial. Consequently, reproducible therapeutic effect is difficult toassure.

           

Treatingrespiratory diseases with inhalers requires delivering sufficient drug to thelungs to bring about a therapeutic response. For optimal efficacy, drugadministration must be reliable, reproducible, and convenient. This goal can beachieved by a combination of formulation, metering, and inhaler designstrategies. The technical and clinical aspects of device design and selectionhave been extensively reviewed elsewhere. The following discussion outlines thedesign of dry powder inhaler (DPI) formulations to achieve the delivery goals.Formulation development and characterization strategies and processing methodswill be discussed, with emphasis on their effect on stability, manufacturingfeasibility, delivery, and bioavailability. To that end, an understanding ofdry powder physics and surface chemistry is essential. The text focuses onbroad concepts and examples, with only sparing use of equations.

            

DRYPOWDER INHALERS

Developmentof the DPI

Inhaleddrug delivery systems can be divided into 3 principal categories: pressurizedmetered-dose inhalers (pMDIs), DPIs, and nebulizers, each class with its uniquestrengths and weaknesses. This classification is based on the physical statesof dispersed-phase and continuous medium, and within each class furtherdifferentiation is based on metering, means of dispersion, or design.Nebulizers are distinctly different from both pMDIs and DPIs, in that the drugis dissolved or suspended in a polar liquid, usually water. Nebulizers are usedmostly in hospital and ambulatory care settings and are not typically used forchronic-disease management because they are larger and less convenient, and theaerosol is delivered continuously over an extended period of time. pMDIs andDPIs are bolus drug delivery devices that contain solid drug, suspended ordissolved in a nonpolar volatile propellant or in a dry powder mix (DPI) thatis fluidized when the patient inhales. The clinical performance of the varioustypes of inhalation devices has been thoroughly examined in many clinicaltrials, which have been reviewed by Barry and O』Callaghan, and more recently byDolovich et al. Those authors concluded that none of the devices are clinicallysuperior and that device selection should be guided by other factors, such asconvenience, cost, and patient preference.

       

Firstapproved in 1956, the pMDI was the first modern inhaler device. With a globalmarket share of about 80%, the pMDI remains the most widely used device. Thedevelopment of DPIs has been motivated by the desire for alternatives to pMDIs,to reduce emission of ozone-depleting and greenhouse gases (chlorofluorocarbonsand hydrofluoroalkanes, respectively) that are used as propellants, and tofacilitate the delivery of macromolecules and products of biotechnology.Concurrently, DPIs proved successful in addressing other device andformulation-related shortcomings of the pMDI. DPIs are easier to use, morestable and efficient systems. Because a pMDI is pressurized, it emits the doseat high velocity, which makes premature deposition in the oropharynx morelikely. Thus, pMDIs require careful coordination of actuation and inhalation.Despite enhancements to their design (eg, use of spacers), incorrect use ofpMDIs is still a prevalent problem; Giraud and Roche found that poorcoordination of actuation and inhalation caused decreased asthma control in asubstantial proportion of patients treated with corticosteroid pMDIs. SinceDPIs are activated by the patient’s inspiratory airflow, they require little orno coordination of actuation and inhalation. This has frequently resulted inbetter lung delivery than was achieved with comparable pMDIs.

          

SinceDPIs are typically formulated as one-phase, solidparticle blends, they are alsopreferred from a stability and processing standpoint. Dry powders are at alower energy state, which reduces the rate of chemical degradation and thelikelihood of reaction with contact surfaces. By contrast, pMDI formulations,which include propellant and cosolvents, may extract organic compounds from thedevice components. Table 1 summarizes the main advantages and disadvantages ofthe DPI (versus the pMDI). For more detail on the evolution of aerosol deliverydevices, excellent reviews are available.

          


Table  1. Dry Powder Inhalers Versus Metered-Dose Inhalers

Advantages of the Dry Powder Inhaler

Disadvantages of the Dry Powder Inhaler

Deposition efficiency dependent on patient’s inspiratory airflow

Potential for dose uniformity problems

Development and manufacture more complex/expensive

            

The development of several new DPI devices,which have been reviewed elsewhere, and the commercial success of thebronchodilator-corticosteroid combination product Advair (GlaxoSmithKline,Research Triangle Park, North Carolina) have further stimulated interest in anddevelopment of DPIs.

            

Principlesof Operation

Figure1 shows the principles of DPI design. Most DPIs contain micronized drug blendedwith larger carrier particles, which prevents aggregation and helps flow. Theimportant role these carrier particles play is discussed later in this article.The dispersion of a dry powder aerosol is conducted from a static powder bed.To generate the aerosol, the particles have to be moved. Movement can bebrought about by several mechanisms. Passive inhalers employ the patient’sinspiratory flow. When the patient activates the DPI and inhales, airflowthrough the device creates shear and turbulence; air is introduced into thepowder bed and the static powder blend is fluidized and enters the patient’sairways. There, the drug particles separate from the carrier particles and arecarried deep into the lungs, while the larger carrier particles impact in theoropharynx and are cleared. Thus, deposition into the lungs is determined bythe patient’s variable inspiratory airflow. Inadequate drug/carrier separation isone of the main explanations for the low deposition efficiency encountered withDPIs. Dose uniformity is a challenge in the performance of DPIs. This is agreater concern with powders than with liquids because of the size and discretenature of the particulates.

Fig.1. Principle of dry powder inhaler design. The formulation typically consistsof micronized drug blended with larger carrier particles, dispensed by a meteringsystem. An active or passive dispersion system entrains the particles into thepatient’s airways, where drug particles separate from the carrier particles andare carried into the lung.         

          

Variousdispersion mechanisms have been adopted for DPIs. While most DPIs arebreath-activated, relying on inhalation for aerosol generation, severalpower-assisted devices (pneumatic, impact force, and vibratory) have beendeveloped or are currently under development. These devices are beingconsidered for the delivery of ystemically active drugs that have narrowtherapeutic windows. It is important to note that these 「active」 inhalers arenot subject to the same limitations as passive inhalers and have a differentadvantage/disadvantage profile. Moreover, it has been suggested that if shearand turbulence could be standardized by using a dispersion mechanism that isindependent of the patient’s breath, high delivery efficiency andreproducibility might be achieved. Thus, an active inhaler might provideformulation-independent delivery. There are no commercially availableactive-dispersion DPIs. Therefore, in the interest of brevity, these devicesare not discussed here; the reader is instead referred to other literature.(To be continued)

相關焦點

  • 霧化家族那些事兒——乾粉吸入劑
    今天我們就來聊聊霧化家族中的乾粉吸入劑。什麼是乾粉吸入劑?乾粉吸入劑(DPI)是指將藥物粉末裝填於一藥物儲庫中,患者通過吸入器吸氣,將粉末分散成霧狀後吸入氣管或肺部發揮療效。當前的DPI是呼吸觸動型,藥物分散和粉霧的產生源動力來自患者的吸氣。
  • 乾粉吸入劑的使用細節您做到了嗎?
    吸入劑是一種藥物劑型,乾粉吸入劑是利用吸氣的氣流將藥物微粒送入氣道和肺內。
  • 乾粉吸入劑,您用對了嗎?
    平喘吸入劑作為局部用藥,具有:起效快、用藥少副作用小、作用直接等特點,受到廣大病人特別是老人和兒童的歡迎。那麼,該如何選擇和使用平喘吸入劑呢?平喘吸入劑按藥理作用來分,主要包括以下幾類:平喘吸入劑按照劑型來分,主要包括
  • 乾粉吸入劑那些不得不說的事
    基礎知識——乾粉吸入製劑 乾粉吸入劑(DryPowder Inhaler有名吸入粉霧劑,是將一種或多種微粉化藥物與載體組成粉體混合物灌裝儲存於膠囊或泡囊當中,經特殊給藥裝置處置之後伴隨著吸氣過程產生的氣溶膠實現藥物的肺內沉積進而發揮藥物治療作用的一類新型製劑;乾粉吸入劑設計初期主要應用於哮喘、慢性肺阻塞、肺部感染等肺部疾病的靶向治療
  • 如何正確使用吸入劑?並非吸一吸那麼簡單!
    哮喘是全世界範圍內最常見的慢性疾病之一,大多數哮喘患者都採用吸入給藥的方式預防和控制哮喘發作,常用的吸入劑型是氣霧劑和乾粉吸入劑 」 其實,這些問題都是由一個原因導致,那就是沒有掌握吸入劑的正確使用方法。還需注意,不一樣的劑型,具體使用方法不盡相同,用藥前請仔細閱讀說明書。 以氣霧劑為例,如丙酸氟替卡鬆氣霧劑、沙丁胺醇氣霧劑。
  • 新藥快訊 | 治療肺動脈高壓的曲前列環素乾粉吸入劑LIQ861
    病友們對這個名字一定不陌生——它的商品名有大名鼎鼎的瑞莫杜林,是一種需要24小時靜脈注射的注射劑;另外還有口服片劑Orenitram,以及霧化吸入劑Tyvaso。這次的新藥LIQ861是一種乾粉吸入劑,基於Liquidia公司獨有的PRINT顆粒製造技術,把藥物製作成尺寸、形狀和化學成分都精確均等的顆粒,通過掌上可攜式吸入器吸入,優化了患者的肺部深層給藥效果。同時,比起每天最多需要吸入36次的霧化劑Tyvaso,乾粉吸入劑LIQ861要方便許多。
  • 百億美元吸入劑市場 國內企業開始發力
    【製藥網 市場分析】近日,歐米尼醫藥宣布與一家印度大型製藥企業達成合作協議,雙方將攜手共同開發一款吸入粉霧劑產品,劍指美國/歐洲/加拿大COPD/哮喘領域的百億美元級市場。因此,目前呼吸科疾病主要採用吸入劑治療,吸入製劑藥物在治療呼吸系統疾病如哮喘和COPD等方面具有無可比擬的優勢。具體來說,相較常規製劑,吸入劑的優點在於可以從肺部直接入血,起效快;局部給藥,能提高藥物在靶器官的聚集,增加療效的同時降低毒副作用;無首過效應,生物利用度高。
  • 15款吸入劑新藥亮相 首個吸入抗生素將誕生!
    米內網數據顯示,目前有93個吸入劑(以藥品名+申報企業名計)以新分類報產,9個已獲批生產並視同過評;17個吸入劑品種暫未有仿製藥獲批,正大天晴、四川普銳特、長風藥業分別有3個、3個、2個品種獨家報產;首個國產1類新藥誕生,15款吸入劑新藥在研(4個為1類新藥),國內首款吸入抗生素如箭在弦。
  • 吸入劑200億市場外企「霸屏」!正大天晴、健康元發力 30品種過評提速
    據米內網數據,2018年中國公立醫療機構終端吸入劑市場首次超過200億元,5個單品年銷超10億,外資品牌「霸屏」。吸入劑過評難度大,目前僅4個吸入劑有企業過評,有61個吸入劑(以藥品名+企業名計)按新註冊分類提交上市申請,獲批生產後視同通過一致性評價;30個吸入劑已公布參比製劑,多數已有企業布局一致性評價,隨著越來越多的參比製劑「露面」,吸入劑一致性評價進展有望加速。
  • 乾粉硅藻泥與水性硅藻泥的區別你知道嗎?
    消費升級下,人們的消費理念不斷發生變化,越來越多消費者開始之中環保,這也使得環保壁材硅藻泥深受大眾喜愛,裝修必備的塗料就是硅藻泥,然而市面上有很多硅藻泥,但是都是主要是兩種,乾粉硅藻泥和水性硅藻泥。那麼這兩種硅藻泥到底有何不同呢?今天小編就來帶您好好了解一下!
  • 乾粉滅火器的乾粉對人體有害嗎?
    乾粉滅火器是我們生活中常備的消防設備,那麼乾粉滅火器裡面的乾粉,究竟是什麼物質,對著人噴射是否會造成傷害呢?對此,實驗小組的人員用兔子和老鼠做了實驗,把兔子和老鼠分別放在密封的觀察箱裡。接下來在觀察箱裡噴射乾粉,觀察實驗對象小白鼠和兔子的反應。乾粉噴入箱內,兔子很快失去了活性,蜷縮在角落裡,並伴有抽搐;而小白鼠變得狂躁不安,上躥下跳,十分鐘後,有一隻小白鼠還暈厥了。看來乾粉滅火器噴出的乾粉都對它們造成了傷害,那麼是不是真如上面說的,乾粉的成分中具有有毒物質呢?
  • 實驗:乾粉滅火器的乾粉對人體有害嗎?
    乾粉滅火器是我們生活中常備的消防設備,那麼乾粉滅火器裡面的乾粉,究竟是什麼物質,對著人噴射是否會造成傷害呢?
  • 乾粉滅火器的使用方法 乾粉滅火器的用法
    乾粉滅火器我們一般見得多,但很少有人會使用。為了以防萬一,我們來學學乾粉滅火器的使用方法。在使用前要先搖晃乾粉,然後打開保險銷,右手用力壓下壓把,左手拿著噴管對著火左右搖擺,直到把火全部撲滅。
  • 膩子粉配方大全,趕快收藏!
    >2、普通高硬內牆膩子粉配方膠粉 1.8~2.2%、雙飛粉(或滑石粉) 90~60% 、熟石膏粉(建築石膏、半水石膏)10~40%3、高硬耐水內牆膩子粉參考配方配方一:膠粉 1~1.2%、雙飛粉 70%、灰鈣粉 30%配方二:膠粉 0.8~1.2%、雙飛粉 60%、灰鈣粉 20%、白水泥 20%
  • 多功能幹粉攪拌機是否可以一機多用的嗎?
    多功能幹粉攪拌機是否可以一機多用的嗎?銘將機械廠家告訴你答案是肯定的。多功能幹粉攪拌機是一種多用途設備,不僅可以用作膩子粉攪拌機,也可以用作乾粉砂漿攪拌機,但一機多用途機器也需要一個前提。多功能幹粉攪拌機的前提是產品需要是同類產品,且主要原料基本相同。
  • 布地奈德福莫特羅粉吸入劑治哮喘療效好
    布地奈德福莫特羅粉吸入劑屬於糖皮質激素+長效β2受體激動劑的複方製劑,臨床療效比單獨使用糖皮質激素或β2受體激動劑更佳。這一類複方製劑因為起效慢,作用時間長,多用於哮喘緩解期的維持治療,而布地奈德福莫特羅粉吸入劑則因為起效快(30min),長期維持治療過程中,也可用於哮喘急性發作的緩解治療,這也是布地奈德福莫特羅粉吸入劑治療哮喘的優勢。
  • 【一警六員】乾粉滅火器使用前是否需要「搖一搖」?
    快來和蜀黍一探究竟吧~↓↓↓查閱各種刊物、資料,對乾粉滅火器使用方法的說法也是五花八門,其中乾粉滅火器在使用前需要 「搖一搖」,讓乾粉滅火劑鬆動的說法也成了操作要領之一。其實,要弄清乾粉滅火器使用前是否需要「搖一搖」,還要從我國乾粉滅火劑的發展說起。
  • 乾粉滅火器成分及原理
    那乾粉滅火器成分及原理?PChouse帶大家一起了解下吧。 1、乾粉滅火器的組成:由鋼瓶、噴管、壓力表、把手保險銷等組成,裡面主要裝置磷酸銨鹽(無機鹽)。 2、乾粉滅火氣劑成分:由無機鹽和少量的添加劑經乾燥、碎粉等混合而成微細固體粉末組成。
  • 乾粉滅火器對著人,後果是......
    乾粉滅火器是我們生活中常備的消防設備,那麼乾粉滅火器裡面的乾粉,究竟是什麼物質,對著人噴射是否會造成傷害呢?2016年,有這樣一條新聞引發網友關注:一對新人舉行婚禮,眾人為了湊熱鬧,拿起乾粉滅火器對著新郎猛噴,隨後新郎倒在地上無法說話……乾粉吸入過量極易導致肺炎,堵塞呼吸道差點要鬧出人命了!