LED照明開關電源設計原理及全過程

2020-11-30 電子產品世界
一、概論

開關電源是利用現代電力電子技術,控制開關管開通和關斷的時間比率,維持穩定輸出電壓的一種電源,開關電源一般由脈衝寬度調製(PWM)控制IC和MOSFET構成。開關電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電源成本在某一輸出功率點上,反而高於開關電源,這一點稱為成本反轉點。隨著電力電子技術的發展和創新,使得開關電源技術也在不斷地創新,這一成本反轉點日益向低輸出電力端移動,這為開關電源提供了廣闊的發展空間

本文引用地址:http://www.eepw.com.cn/article/201612/325444.htm

電源有如人體的心臟,是所有電設備的動力。但電源卻不像心臟那樣形式單一。因為,標誌電源特性的參數有功率、電源、頻率、噪聲及帶載時參數的變化等等;在同一參數要求下,又有體積、重量、形態、效率、可靠性等指標,人可按此去"塑造"和完美電源,因此電源的形式是極多的。

隨著電力電子技術的高速發展,電力電子設備與人們的工作、生活的關係日益密切,而電子設備都離不開可靠的電源,進入80年代計算機電源全面實現了開關電源化,率先完成計算機的電源換代,進入90年**關電源相繼進入各種電子、電器設備領域,程控交換機、通訊、電子檢測設備電源、控制設備電源等都已廣泛地使用了開關電源,更促進了開關電源技術的迅速發展。開關電源是利用現代電力電子技術,控制開關電晶體開通和關斷的時間比率,維持穩定輸出電壓的一種電源,開關電源一般由脈衝寬度調製(PWM)控制IC和MOSFET構成。開關電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電源成本在某一輸出功率點上,反而高於開關電源,這一成本反轉點。隨著電力電子技術的發展和創新,使得開關電源技術在不斷地創新,這一成本反轉點日益向低輸出電力端移動,這為開關電源提供了廣泛的發展空間。

一般電力要經過轉換才能符合使用的需要。轉換的例子有:交流轉換成直流,高電壓變成低電壓,大功率中取小功率等等。

開關電源的工作原理是:

1.交流電源輸入經整流濾波成直流;

2.通過高頻PWM(脈衝寬度調製)信號控制開關管,將那個直流加到開關變壓器初級上;

3.開關變壓器次級感應出高頻電壓,經整流濾波供給負載;

4.輸出部分通過一定的電路反饋給控制電路,控制PWM佔空比,以達到穩定輸出的目的。

開關電源設計全過程

1 目的

希望以簡短的篇幅,將公司目前設計的流程做介紹,若有介紹不當之處,請不吝指教。

2 設計步驟:

2.1 繪線路圖、PCB Layout.

2.2 變壓器計算。

2.3 零件選用。

2.4 設計驗證。

3 設計流程介紹(以DA-14B33為例):

3.1 線路圖、PCB Layout請參考資識庫中說明。

3.2 變壓器計算:

變壓器是整個電源供應器的重要核心,所以變壓器的計算及驗證是很重要的,以下即就DA-14B33變壓器做介紹。

3.2.1 決定變壓器的材質及尺寸:

依據變壓器計算公式

B(max) = 鐵心飽合的磁通密度(Gauss)

Lp = 一次側電感值(uH)

Ip = 一次側峰值電流(A)

Np = 一次側(主線圈)圈數

Ae = 鐵心截面積(cm2)

B(max)依鐵心的材質及本身的溫度來決定,以TDK Ferrite Core PC40為例,100℃時的B(max)為3900 Gauss,設計時應考慮零件誤差,所以一般取3000~3500 Gauss之間,若所設計的power為Adapter(有外殼)則應取3000 Gauss左右,以避免鐵心因高溫而飽合,一般而言鐵心的尺寸越大,Ae越高,所以可以做較大瓦數的Power.

3.2.2 決定一次側濾波電容:

濾波電容的決定,可以決定電容器上的Vin(min),濾波電容越大,Vin(win)越高,可以做較大瓦數的Power,但相對價格亦較高。

3.2.3 決定變壓器線徑及線數:

當變壓器決定後,變壓器的Bobbin即可決定,依據Bobbin的槽寬,可決定變壓器的線徑及線數,亦可計算出線徑的電流密度,電流密度一般以6A/mm2為參考,電流密度對變壓器的設計而言,只能當做參考值,最終應以溫昇記錄為準。  3.2.4 決定Duty cycle (工作周期):

由以下公式可決定Duty cycle ,Duty cycle的設計一般以50%為基準,Duty cycle若超過50%易導致振蕩的發生。

NS = 二次側圈數

NP = 一次側圈數

Vo = 輸出電壓

VD= 二極體順向電壓

Vin(min) = 濾波電容上的谷點電壓

D =工作周期(Duty cycle)

3.2.5 決定Ip值:

Ip = 一次側峰值電流

Iav = 一次側平均電流

Pout = 輸出瓦數

效率

PWM震蕩頻率

3.2.6 決定輔助電源的圈數:

依據變壓器的圈比關係,可決定輔助電源的圈數及電壓。

3.2.7 決定MOSFET及二次側二極體的Stress(應力):

依據變壓器的圈比關係,可以初步計算出變壓器的應力(Stress)是否符合選用零件的規格,計算時以輸入電壓264V(電容器上為380V)為基準。

3.2.8 其它:

若輸出電壓為5V以下,且必須使用TL431而非TL432時,須考慮多一組繞組提供Photo coupler及TL431使用。

3.2.9 將所得資料代入 公式中,如此可得出B(max),若B(max)值太高或太低則參數必須重新調整。

3.2.10 DA-14B33變壓器計算:

輸出瓦數13.2W(3.3V/4A),Core = EI-28,可繞面積(槽寬)=10mm,Margin Tape =? 2.8mm(每邊),剩餘可繞面積=4.4mm.

假設fT = 45 KHz ,Vin(min)=90V, =0.7,P.F.=0.5(cosθ),Lp=1600 Uh

計算式:

變壓器材質及尺寸:l

由以上假設可知材質為PC-40,尺寸=EI-28,Ae=0.86cm2,可繞面積(槽寬)=10mm,因Margin Tape使用2.8mm,所以剩餘可繞面積為4.4mm.

假設濾波電容使用47uF/400V,Vin(min)暫定90V.

決定變壓器的線徑及線數:

假設NP使用0.32ψ的線

電流密度=

可繞圈數=

假設Secondary使用0.35ψ的線

電流密度=

假設使用4P,則

電流密度=

可繞圈數=

決定Dutyl cycle:

假設Np=44T,Ns=2T,VD=0.5(使用schottky Diode)

決定Ip值:

決定輔助電源的圈數:

假設輔助電源=12V

NA1=6.3圈

假設使用0.23ψ的線

可繞圈數=

若NA1=6Tx2P,則輔助電源=11.4V

決定MOSFET及二次側二極體的Stress(應力):

MOSFET(Q1) =最高輸入電壓(380V)+ =

=463.6V

Diode(D5)=輸出電壓(Vo)+ x最高輸入電壓(380V)=

=20.57V

Diode(D4)=

= =41.4V其它:

因為輸出為3.3V,而TL431的Vref值為2.5V,若再加上photo coupler上的壓降約1.2V,將使得輸出電壓無法推動Photo coupler及TL431,所以必須另外增加一組線圈提供回授路徑所需的電壓。

假設NA2 = 4T使用0.35ψ線,則

可繞圈數= ,所以可將NA2定為4Tx2P

變壓器的接線圖:

3.3 零件選用:

零件位置(標註)請參考線路圖: (DA-14B33 Schematic)

3.3.1 FS1:

由變壓器計算得到Iin值,以此Iin值(0.42A)可知使用公司共用料2A/250V,設計時亦須考慮Pin(max)時的Iin是否會超過保險絲的額定值。

3.3.2 TR1(熱敏電阻):

電源啟動的瞬間,由於C1(一次側濾波電容)短路,導致Iin電流很大,雖然時間很短暫,但亦可能對Power產生傷害,所以必須在濾波電容之前加裝一個熱敏電阻,以限制開機瞬間Iin在Spec之內(115V/30A,230V/60A),但因熱敏電阻亦會消耗功率,所以不可放太大的阻值(否則會影響效率),一般使用SCK053(3A/5Ω),若C1電容使用較大的值,則必須考慮將熱敏電阻的阻值變大(一般使用在大瓦數的Power上)。

3.3.3 VDR1(突波吸收器):

當雷極發生時,可能會損壞零件,進而影響Power的正常動作,所以必須在靠AC輸入端 (Fuse之後),加上突波吸收器來保護Power(一般常用07D471K),但若有價格上的考量,可先忽略不裝。

3.3.4 CY1,CY2(Y-Cap):

Y-Cap一般可分為Y1及Y2電容,若AC Input有FG(3 Pin)一般使用Y2- Cap , AC Input若為2Pin(只有L,N)一般使用Y1-Cap,Y1與Y2的差異,除了價格外(Y1較昂貴),絕緣等級及耐壓亦不同(Y1稱為雙重絕緣,絕緣耐壓約為Y2的兩倍,且在電容的本體上會有"回"符號或註明Y1),此電路因為有FG所以使用Y2-Cap,Y-Cap會影響EMI特性,一般而言越大越好,但須考慮漏電及價格問題,漏電(Leakage Current )必須符合安規須求(3Pin公司標準為750uA max)。

3.3.5 CX1(X-Cap)、RX1:

X-Cap為防制EMI零件,EMI可分為Conduction及Radiation兩部分,Conduction規範一般可分為: FCC Part 15J Class B 、 CISPR 22(EN55022) Class B 兩種 , FCC測試頻率在450K~30MHz,CISPR 22測試頻率在150K~30MHz, Conduction可在廠內以頻譜分析儀驗證,Radiation 則必須到實驗室驗證,X-Cap 一般對低頻段(150K ~ 數M之間)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但價格愈高),若X-Cap在0.22uf以上(包含0.22uf),安規規定必須要有洩放電阻(RX1,一般為1.2MΩ 1/4W)。

3.3.6 LF1(Common Choke):

EMI防制零件,主要影響Conduction 的中、低頻段,設計時必須同時考慮EMI特性及溫昇,以同樣尺寸的Common Choke而言,線圈數愈多(相對的線徑愈細),EMI防制效果愈好,但溫昇可能較高。

3.3.7 BD1(整流二極體):

將AC電源以全波整流的方式轉換為DC,由變壓器所計算出的Iin值,可知只要使用1A/600V的整流二極體,因為是全波整流所以耐壓只要600V即可。

3.3.8 C1(濾波電容):

由C1的大小(電容值)可決定變壓器計算中的Vin(min)值,電容量愈大,Vin(min)愈高但價格亦愈高,此部分可在電路中實際驗證Vin(min)是否正確,若AC Input 範圍在90V~132V (Vc1 電壓最高約190V),可使用耐壓200V的電容;若AC Input 範圍在90V~264V(或180V~264V),因Vc1電壓最高約380V,所以必須使用耐壓400V的電容。

Re:開關電方設計過祘

3.3.9 D2(輔助電源二極體):

整流二極體,一般常用FR105(1A/600V)或BYT42M(1A/1000V),兩者主要差異:

1. 耐壓不同(在此處使用差異無所謂)

2. VF不同(FR105=1.2V,BYT42M=1.4V)

3.3.10 R10(輔助電源電阻):

主要用於調整PWM IC的VCC電壓,以目前使用的3843而言,設計時VCC必須大於8.4V(Min. Load時),但為考慮輸出短路的情況,VCC電壓不可設計的太高,以免當輸出短路時不保護(或輸入瓦數過大)。

3.3.11 C7(濾波電容):

輔助電源的濾波電容,提供PWM IC較穩定的直流電壓,一般使用100uf/25V電容。

3.3.12 Z1(Zener 二極體):

當回授失效時的保護電路,回授失效時輸出電壓衝高,輔助電源電壓相對提高,此時若沒有保護電路,可能會造成零件損壞,若在3843 VCC與3843 Pin3腳之間加一個Zener Diode,當回授失效時Zener Diode會崩潰,使得Pin3腳提前到達1V,以此可限制輸出電壓,達到保護零件的目的。Z1值的大小取決於輔助電源的高低,Z1的決定亦須考慮是否超過Q1的VGS耐壓值,原則上使用公司的現有料(一般使用1/2W即可)。

3.3.13 R2(啟動電阻):

提供3843第一次啟動的路徑,第一次啟動時透過R2對C7充電,以提供3843 VCC所需的電壓,R2阻值較大時,turn on的時間較長,但短路時Pin瓦數較小,R2阻值較小時,turn on的時間較短,短路時Pin瓦數較大,一般使用220KΩ/2W M.O

3.3.14 R4 (Line Compensation):

高、低壓補償用,使3843 Pin3腳在90V/47Hz及264V/63Hz接近一致(一般使用750KΩ~1.5MΩ 1/4W之間)。

3.3.15 R3,C6,D1 (Snubber):

此三個零件組成Snubber,調整Snubber的目的:1.當Q1 off瞬間會有Spike產生,調整Snubber可以確保Spike不會超過Q1的耐壓值,2.調整Snubber可改善EMI.一般而言,D1使用1N4007(1A/1000V)EMI特性會較好。R3使用2W M.O.電阻,C6的耐壓值以兩端實際壓差為準(一般使用耐壓500V的陶質電容)。

3.3.16 Q1(N-MOS):

目前常使用的為3A/600V及6A/600V兩種,6A/600V的RDS(ON)較3A/600V小,所以溫昇會較低,若IDS電流未超過3A,應該先以3A/600V為考量,並以溫昇記錄來驗證,因為6A/600V的價格高於3A/600V許多,Q1的使用亦需考慮VDS是否超過額定值。

3.3.17 R8:

R8的作用在保護Q1,避免Q1呈現浮接狀態。

3.3.18 R7(Rs電阻):

3843 Pin3腳電壓最高為1V,R7的大小須與R4配合,以達到高低壓平衡的目的,一般使用2W M.O.電阻,設計時先決定R7後再加上R4補償,一般將3843 Pin3腳電壓設計在0.85V~0.95V之間(視瓦數而定,若瓦數較小則不能太接近1V,以免因零件誤差而頂到1V)。

3.3.19 R5,C3(RC filter):

濾除3843 Pin3腳的雜訊,R5一般使用1KΩ 1/8W,C3一般使用102P/50V的陶質電容,C3若使用電容值較小者,重載可能不開機(因為3843 Pin3瞬間頂到1V);若使用電容值較大者,也許會有輕載不開機及短路Pin過大的問題。

3.3.20 R9(Q1 Gate電阻 ):

R9電阻的大小,會影響到EMI及溫昇特性,一般而言阻值大,Q1 turn on / turn off的速度較慢,EMI特性較好,但Q1的溫昇較高、效率較低(主要是因為turn off速度較慢);若阻值較小, Q1 turn on / turn off的速度較快,Q1溫昇較低、效率較高,但EMI較差,一般使用51Ω-150Ω 1/8W.

3.3.21 R6,C4(控制振蕩頻率):

決定3843的工作頻率,可由Data Sheet得到R、C組成的工作頻率,C4一般為10nf的電容(誤差為5%),R6使用精密電阻,以DA-14B33為例,C4使用103P/50V PE電容,R6為3.74KΩ 1/8W精密電阻,振蕩頻率約為45 KHz.

3.3.22 C5:

功能類似RC filter,主要功用在於使高壓輕載較不易振蕩,一般使用101P/50V陶質電容。

3.3.23 U1(PWM IC):

3843是PWM IC的一種,由Photo Coupler (U2)回授信號控制Duty Cycle的大小,Pin3腳具有限流的作用(最高電壓1V),目前所用的3843中,有KA3843(SAMSUNG)及UC3843BN(S.T.)兩種,兩者腳位相同,但產生的振蕩頻率略有差異,UC3843BN較KA3843快了約2KHz,fT的增加會衍生出一些問題(例如:EMI問題、短路問題),因KA3843較難買,所以新機種設計時,儘量使用UC3843BN.

3.3.24 R1、R11、R12、C2(一次側迴路增益控制):

3843內部有一個Error AMP(誤差放大器),R1、R11、R12、C2及Error AMP組成一個負回授電路,用來調整迴路增益的穩定度,迴路增益,調整不恰當可能會造成振蕩或輸出電壓不正確,一般C2使用立式積層電容(溫度持性較好)。

3.3.25 U2(Photo coupler)

光耦合器(Photo coupler)主要將二次側的信號轉換到一次側(以電流的方式),當二次側的TL431導通後,U2即會將二次側的電流依比例轉換到一次側,此時3843由Pin6 (output)輸出off的信號(Low)來關閉Q1,使用Photo coupler的原因,是為了符合安規需求(primacy to secondary的距離至少需5.6mm)。

3.3.26 R13(二次側迴路增益控制):

控制流過Photo coupler的電流,R13阻值較小時,流過Photo coupler的電流較大,U2轉換電流較大,迴路增益較快(需要確認是否會造成振蕩),R13阻值較大時,流過Photo coupler的電流較小,U2轉換電流較小,迴路增益較慢,雖然較不易造成振蕩,但需注意輸出電壓是否正常。

3.3.27 U3(TL431)、R15、R16、R18

調整輸出電壓的大小, ,輸出電壓不可超過38V(因為TL431 VKA最大為36V,若再加Photo coupler的VF值,則Vo應在38V以下較安全),TL431的Vref為2.5V,R15及R16並聯的目的使輸出電壓能微調,且R15與R16並聯後的值不可太大(儘量在2KΩ以下),以免造成輸出不準。

3.3.28 R14,C9(二次側迴路增益控制):

控制二次側的迴路增益,一般而言將電容放大會使增益變慢;電容放小會使增益變快,電阻的特性則剛好與電容相反,電阻放大增益變快;電阻放小增益變慢,至於何謂增益調整的最佳值,則可以Dynamic load來量測,即可取得一個最佳值。

3.3.29 D4(整流二極體):

因為輸出電壓為3.3V,而輸出電壓調整器(Output Voltage Regulator)使用TL431(Vref=2.5V)而非TL432(Vref=1.25V),所以必須多增加一組繞組提供Photo coupler及TL431所需的電源,因為U2及U3所需的電流不大(約10mA左右),二極體耐壓值100V即可,所以只需使用1N4148(0.15A/100V)。

3.3.30 C8(濾波電容):

因為U2及U3所需的電流不大,所以只要使用1u/50V即可。

3.3.31 D5(整流二極體):

輸出整流二極體,D5的使用需考慮:

a. 電流值

b. 二極體的耐壓值

以DA-14B33為例,輸出電流4A,使用10A的二極體(Schottky)應該可以,但經點溫昇驗證後發現D5溫度偏高,所以必須換為15A的二極體,因為10A的VF較15A的VF 值大。耐壓部分40V經驗證後符合,因此最後使用15A/40V Schottky.

3.3.32 C10,R17(二次側snubber) :

D5在截止的瞬間會有spike產生,若spike超過二極體(D5)的耐壓值,二極體會有被擊穿的危險,調整snubber可適當的減少spike的電壓值,除保護二極體外亦可改善EMI,R17一般使用1/2W的電阻,C10一般使用耐壓500V的陶質電容,snubber調整的過程(264V/63Hz)需注意R17,C10是否會過熱,應避免此種情況發生。

3.3.33 C11,C13(濾波電容):

二次側第一級濾波電容,應使用內阻較小的電容(LXZ,YXA…),電容選擇是否洽當可依以下三點來判定:

a. 輸出Ripple電壓是符合規格

b. 電容溫度是否超過額定值

c. 電容值兩端電壓是否超過額定值

3.3.34 R19(假負載):

適當的使用假負載可使線路更穩定,但假負載的阻值不可太小,否則會影響效率,使用時亦須注意是否超過電阻的額定值(一般設計只使用額定瓦數的一半)。

3.3.35 L3,C12(LC濾波電路):

LC濾波電路為第二級濾波,在不影響線路穩定的情況下,一般會將L3 放大(電感量較大),如此C12可使用較小的電容值。

4 設計驗證:(可分為三部分)

a. 設計階段驗證

b. 樣品製作驗證

c. QE驗證4.1 設計階段驗證

設計實驗階段應該養成記錄的習慣,記錄可以驗證實驗結果是否與電氣規格相符,以下即就DA-14B33設計階段驗證做說明(驗證項目視規格而定)。

4.1.1 電氣規格驗證:

4.1.1.1 3843 PIN3腳電壓(full load 4A) :

90V/47Hz = 0.83V

115V/60Hz = 0.83V

132V/60Hz = 0.83V

180V/60Hz = 0.86V

230V/60Hz = 0.88V

264V/63Hz = 0.91V

4.1.1.2 Duty Cycle , fT:

4.1.1.3 Vin(min) = 100V (90V / 47Hz full load)

4.1.1.4 Stress (264V / 63Hz full load) :

Q1 MOSFET:

4.1.1.5 輔助電源(開機,滿載)、短路Pin max.:

4.1.1.6 Static (full load)

Pin(w) Iin(A) Iout(A) Vout(V) P.F. Ripple(mV) Pout(w) eff

90V/47Hz 18.7 0.36 4 3.30 0.57 32 13.22 70.7

115V/60Hz 18.6 031 4 3.30 0.52 28 13.22 71.1

132V/60Hz 18.6 0.28 4 3.30 0.50 29 13.22 71.1

180V/60Hz 18.7 0.21 4 3.30 0.49 30 13.23 70.7

230V/60Hz 18.9 0.18 4 3.30 0.46 29 13.22 69.9

264V/60Hz 19.2 0.16 4 3.30 0.45 29 13.23 68.9

4.1.1.7 Full Range負載(0.3A-4A)

(驗證是否有振蕩現象)

4.1.1.8 回授失效(輸出輕載)

Vout = 8.3Vê90V/47Hz

Vout = 6.03Vê264V/63Hz

4.1.1.9 O.C.P.(過電流保護)

90V/47Hz = 7.2A

264V/63Hz = 8.4A

4.1.1.10 Pin(max.)

90V/47Hz = 24.9W

264V/63Hz = 27.1W

4.1.1.11 Dynamic test

H=4A,t1=25ms,slew Rate = 0.8A/ms (Rise)

L=0.3A,t2=25ms,slew Rate = 0.8A/ms (Full)

90V/47Hz

264V/63Hz

4.1.1.12 HI-POT test:

HI-POT test一般可分為兩種等級:

輸入為3 Pin(有FG者),HI-POT test為1500Vac/1minute.Y-CAP使用Y2-CAP

輸入為2 Pin(無FG者),HI-POT test為3000Vac/1minute.Y-CAP使用Y1-CAP

DA-14B33屬於輸入3 PIN HI-POT test 為1500Vac/1 minute.

4.1.1.13 Grounding test:

輸入為3 Pin(有FG者),一般均要測接地阻(Grounding test),安規規定FG到輸出線材(輸出端)的接地電阻不能超過100MΩ(2.5mA/3 Second)。

4.1.1.14 溫昇記錄

設計實驗定案後(暫定),需針對整體溫昇及EMI做評估,若溫昇或EMI無法符合規格,則需重新實驗。溫昇記錄請參考附件,D5原來使用BYV118(10A/40V Schottky barrier 肖特基二極體 ),因溫昇較高改為PBYR1540CTX(15A/40V)。

4.1.1.15 EMI測試:

EMI測試分為二類:

Conduction(傳導幹擾)

Radiation(幅射幹擾)

前者視規範不同而有差異(FCC : 450K - 30MHz,CISPR 22 :150K - 30MHz),前者可利用廠內的頻譜分析儀驗證;後者(範圍由30M - 300MHz,則因廠內無設備必須到實驗室驗證,Conduction,Radiation測試資料請參考附件) .

4.1.1.16 機構尺寸:

設計階段即應對機構尺寸驗證,驗證的項目包括 : PCB尺寸、零件限高、零件禁置區、螺絲孔位置及孔徑、外殼孔寸…,若設計階段無法驗證,則必須在樣品階段驗證。

4.1.2 樣品驗證:

樣品製作完成後,除溫昇記錄、EMI測試外(是否需重新驗證,視情況而定),每一臺樣品都應經過驗證(包括電氣及機構尺寸),此階段的電氣驗證可以以ATE(Chroma)測試來完成,ATE測試必須與電氣規格相符。

4.1.3 QE驗證:

QE針對工程部所提供的樣品做驗證,工程部應提供以下交件及樣品供QE驗證。

開關電源的優缺點

1、功耗小,效率高。在開關電源電路中,電晶體V在激勵信號的激勵下,它交替地工作在導通-截止和截止-導通的開關狀態,轉換速度很快,頻率一般為50kHz左右,在一些技術先進的國家,可以做到幾百或者近1000kHz.這使得開關電晶體V的功耗很小,電源的效率可以大幅度地提高,其效率可達到80%.

2、體積小,重量輕。從開關電源的原理框圖可以清楚地看到這裡沒有採用笨重的工頻變壓器。由於調整管V上的耗散功率大幅度降低後,又省去了較大的散熱片。由於這兩方面原因,所以開關電源的體積小,重量輕。

3、穩壓範圍寬。從開關電源的輸出電壓是由激勵信號的佔空比來調節的,輸入信號電壓的變化可以通過調頻或調寬來進行補償。這樣,在工頻電網電壓變化較大時,它仍能夠保證有較穩定的輸出電壓。所以開關電源的穩壓範圍很寬,穩壓效果很好。此外,改變佔空比的方法有脈寬調製型和頻率調製型兩種。開關電源不僅具有穩壓範圍寬的優點,而且實現穩壓的方法也較多,設計人員可以根據實際應用的要求,靈活地選用各種類型的開關電源。

濾波的效率大為提高,使濾波電容的容量和體積大為減少。開關電源的工作頻率目前基本上是工作在50kHz,是線性穩壓電源的1000倍,這使整流後的濾波效率幾乎也提高了1000倍;即使採用半波整流後加電容濾波,效率也提高了500倍。在相同的紋波輸出電壓下,採用開關電源時,濾波電容的容量只是線性穩壓電源中濾波電容的1/500~1/1000.電路形式靈活多樣,有自激式和他激式,有調寬型和調頻型,有單端式和雙端式等等,設計者可以發揮各種類型電路的特長,設計出能滿足不同應用場合的開關電源。

開關穩壓電源缺點:

開關穩壓電源的缺點是存在較為嚴重的開關幹擾。開關穩壓電源中,功率調整開關電晶體V工作在開關狀態,它產生的交流電壓和電流通過電路中的其他元器件產生尖峰幹擾和諧振幹擾,這些幹擾如果不採取一定的措施進行抑制、消除和屏蔽,就會嚴重地影響整機的正常工作。此外由於開關穩壓電源振蕩器沒有工頻變壓器的隔離,這些幹擾就會串入工頻電網,使附近的其他電子儀器、設備和家用電器受到嚴重幹擾。

目前,由於國內微電子技術、阻容器件生產技術以及磁性材料技術與一些技術先進國家還有一定的差距,因而造價不能進一步降低,也影響到可靠性的進一步提高。所以在我國的電子儀器以及機電一體化儀器中,開關穩壓電源還不能得到十分廣泛的普及及使用。特別是對於無工頻變壓器開關穩壓電源中的高壓電解電容器、高反壓大功率開關管、開關變壓器的磁芯材料等器件,在我國還處於研究、開發階段。

在一些技術先進國家,開關穩壓電源雖然有了一定的發展,但在實際應用中也還存在一些問題,不能十分令人滿意。這暴露出開關穩壓電源的又一個缺點,那就是電路結構複雜,故障率高,維修麻煩。對此,如果設計者和製造者不予以充分重視,則它將直接影響到開關穩壓電源的推廣應用。當今,開關穩壓電源推廣應用比較困難的主要原因就是它的製作技術難度大、維修麻煩和造價成本較高。

相關焦點

  • 開關電源設計原理及全過程(一)
    開關電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電源成本在某一輸出功率點上,反而高於開關電源,這一點稱為成本反轉點。隨著電力電子技術的發展和創新,使得開關電源技術也在不斷地創新,這一成本反轉點日益向低輸出電力端移動,這為開關電源提供了廣闊的發展空間電源有如人體的心臟,是所有電設備的動力。
  • led應急燈電源電路圖大全(六款模擬電路設計原理圖詳解)
    疏散應急照明燈、標誌燈,統稱消防應急照明燈具,是防火安全措施中要求的一種重要產品。平時它要像普通燈具一樣提供照明,當出現緊急情況,如地震、失火或電路故障引起電源突然中斷,所有光源都已停止工作,此時,它必須立即提供可靠的照明,並指示人流疏散的方向和緊急出口的位置,以確保滯留在黑暗中的人們順利地撤離。下面小編給大家介紹了幾款led應急燈電源電路原理圖參考。
  • PFC開關電源硬體設計分享
    在今天和明天的文章中,我們將會為各位工程師們分享一種基於LED路燈的PFC開關電源設計方案。本方案採用有源PFC功能電路設計的室外LED路燈電源,其內部特別設置有EMC電路和高效防雷電路,能滿足室外照明和抗雷需要。今天我們將會就這一開關電源方案的硬體設計展開詳細介紹。
  • 一文看懂節能燈適用的高頻恆流LED開關電源設計
    led開關電源的作用   LED開關電源是有電路來控制開關管而進行高速的道通和截止。   6、LED電源是指給LED照明供電用的電源,多是開關電源,最大的特點恆壓恆流輸出。在這一電壓電流雙閉環控制系統中,我們所設計的變換器的幅頻特性由雙極點變成單極點,因此,增益帶寬乘積得到了提高,穩定幅度大,具有良好的頻率響應特性。   這一LED開關電源的主要的功能模塊包括啟動電路、過流過壓欠壓保護電路、反饋電路、整流電路。以下對各個模塊的原理和功能進行分析。該電路系統的設計原理圖如下圖圖1所示。
  • 開關電源原理與設計(連載45)全橋式開關電源變壓器參數的計算
    全橋式開關電源變壓器參數的計算 全橋式變壓器開關電源的工作原理與推挽式變壓器開關電源的工作原理是非常接近的,只是變壓器的激勵方式與工作電源的接入方式有點不同;因此,用於計算推挽式變壓器開關電源變壓器初級線圈N1繞組匝數的數學表達式,同樣可以用於全橋式變壓器開關電源變壓器初級線圈
  • 贛州led開關電源安全使用及注意事項
    贛州led開關電源安全使用及注意事項 ,「kfuf8t」 贛州led開關電源安全使用及注意事項即使此電路中有四個功率關,通常仍有顯著的效能增進現象,這是電源電池應用的關鍵所在。
  • LED電源設計及經驗彙編
    隨著LED照明的發展,led驅動電源的入行者人數在激增。其中有從其他電源設計或者電子行業轉行而來,但更多的確是眾多的新入行者。OFweek電源網小編在這裡整理前人經驗,摘錄匯總led電源的常見設計思路、問題與注意事項。希望對新進者有所幫助...
  • 開關電源設計及過程概述
    開關電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電源成本在某一輸出功率點上,反而高於開關電源,這一點稱為成本反轉點。隨著電力電子技術的發展和創新,使得開關電源技術也在不斷地創新,這一成本反轉點日益向低輸出電力端移動,這為開關電源提供了廣闊的發展空間  電源有如人體的心臟,是所有電設備的動力。但電源卻不像心臟那樣形式單一。
  • 曝光11元T8 LED燈管評測及拆解全過程
    11元燈管已經新鮮出爐,小編拿到樣品之後也找到了一家照明檢測設備齊全的公司對這一款產品進行全方位的評測。廢話不多說,評測過程詳見圖片。 T8 LED燈管拆解前全貌 T8 LED燈管測試進行中 功率、光通量、顯色指數均為燈管測試的主要內容,測試十分鐘後,最終顯示結果為功率14.99W,光通量1535.9lm,光效102.43lm/W,顯色指數為74.7。
  • 基於SG3524的開關穩壓電源設計
    隨著電子技術的迅猛發展,開關穩壓電源已作為一種較理想的電源為人們所使用,其運用功率變換器進行電能變換,能夠在滿足各種農業用電的前提下,降低電耗,其高效節能可帶來巨大的農業經濟效益。然而當前的農業用開關穩壓電源,雖然體積小,效率高,但輸出電壓的紋波較大 ,難以保證輸出電壓高穩定性,常常影響農用機械和電氣設備的連續生產,反而增加了耗能。
  • PFC開關電源電路設計分享
    昨天我們為大家分享了一種PFC開關電源的原理和硬體部分的設計思路,這種基於LED路燈的PFC開關電源非常適用於公共場所的路燈照明應用
  • 白光LED照明電路的工作原理
    T和整流橋堆UR構成整流電路,將220V市電整流為18V直流電壓,再經 C 濾波後作為照明電源。,FU是熔斷器,S是電源開關。電路是利用儲能電感L的自感電動勢實現升壓的,現在我們來分析升壓電路的工作原理。接通電源後,PNP電晶體VT 1 因 R 1 提供基極偏流而導通,進而通過 R 2 使VT 2 也導通,將電感L和電容 C 的右端接電源負端。
  • 無線LED照明供電系統電路模塊設計
    能量接收模塊  工作原理:由LC並聯諧振負責能量接收,經過全橋整流電路形成直流電壓    AD模數轉換模塊  TLC549是採用IinCMOSTM技術並以開關電容逐次逼近原理工作的8位串行A/8VCC+5V電源引腳。  LCD顯示模塊  工作原理:液晶顯示模塊具有體積小、功耗低、顯示內容豐富、超薄輕巧等優點,在袖珍式儀表和低功耗應用系統中得到廣泛的應用。目前字符型液晶顯示模塊已經是單片機應用設計中最常用的信息顯示器件。
  • 室內LED照明創新設計技術發展趨勢
    因此,需要儘快導出和散發熱量,LED光源和燈具的散熱是整個系統設計的頭等大事,LED光源和燈具點亮工作時溫度高了,易使LED燈珠早期老化,引起光衰,易使驅動電源早期失效,電解電容器因高溫而乾枯。低電壓大電流光源(LVLEDs)太燙成難治頑疾(圖1)。
  • 詳解LED 照明燈具設計方案
    LED 照明以其高節能、長壽命、利環保的特點成為大家廣為關注的焦點。這幾年高亮度的 LED 光源因其製造技術突飛猛進,而其生產成本又節節下降,如今使用 LED 光源作為高亮度、高效率而又省電、無碳排放的能照明光源已成為全球的海量需求,一個以製造 LED 照明燈具的新興行業正在崛起,產業鏈正在日益完善,技術正在日日更新。
  • 開關電源設計全過程解析
    開關電源設計全過程1 目的希望以簡短的篇幅,將公司目前設計的流程做介紹,若有介紹不當之處,請不吝指教.2 設計步驟:2.1 繪線路圖、PCB Layout.2.2 變壓器計算.2.3 零件選用.2.4 設計驗證.
  • LED區域照明驅動電源及聯網智能化LED街燈控制系統
    另一方面,高亮度白光發光二極體(led)在性能和成本等方面持續改進,非常適合區域照明應用,並且提供一些HID所不具備的優勢,如方向性更好、色彩質量更佳、環保,並且其開啟和關閉能夠更方便地控制,便於自動檢測環境光從而改變亮度;此外,LED的可靠性也更佳,利於降低維護成本及總體擁有成本。
  • 一種基於LED路燈的PFC開關電源驅動設計方案
    本方案設計的PFC開關電源性能良好、可靠、經濟實惠且效率高,在LED路燈使用過程中取得滿意的效果。  1 系統結構框圖  採用隔離變壓器、PFC控制實現的開關電源,輸出恆壓恆流的電壓,驅動LED路燈。電路的總體框圖如圖1所示。
  • 開關電源工作原理
    本文將為您解讀開關電源的原理~本文引用地址:http://www.eepw.com.cn/article/271991.htm一、開關電源工作原理—簡介  顧名思義,開關電源就是利用電子開關器件(如電晶體、場效應管、可控矽閘流管等),通過控制電路,使電子開關器件不停地「接通」和「關斷」,讓電子開關器件對輸入電壓進行脈衝調製,從而實現
  • 北京led泛光燈原理【玉屏資訊】
    北京led泛光燈原理【玉屏資訊】東莞市福特電子有限公司註冊地址位於廣東省東莞市塘廈鎮諸佛嶺宏業南九路2號2棟406室,註冊機關為廣東省東莞市工商管理局,法人代表為洪貴閏,經營範圍包括銷售:電子產品。