如何降低抑制開關電源的電磁騷擾?

2020-11-25 電子發燒友

如何降低抑制開關電源的電磁騷擾?

工程師黃明星 發表於 2018-08-01 10:33:00

引 言

電源裝置是電子電氣設備中所不可缺少的部件,開關電源以其效率高、體積小、重量輕、電壓適應性好等優點,受到相關行業的青睞。但目前存在的缺陷是電磁騷擾大,對環境或對其他設備造成不利影響。目前對於可變負載的開關電源,筆者所了解到的產品最低輸出噪聲電壓也在70 mV以上。設計低電磁騷擾的開關電源,也就成了許多設計人員的希望,為此提出了種種方法。本例設計要點不同於常規技術,而是採取了從源頭上對電磁噪聲進行消除,再結合一些常規措施。將電源輸出埠的噪聲電壓降至20 mV以下,顯著提高開關電源的電磁兼容性指標。

1 開關電源電路結構與降噪原理

該開關電源的設計目標是穩定20 V輸出,輸出電流0~2 A可變,用於音響系統。為了突出降低電磁噪聲的處理技術,簡化電路,用單片開關電源晶片TOP224Y進行設計。TOP224Y內部已包含了PWM調製所需的所有電路以及激勵管輸出,由它激勵變壓器,開關頻率為100 kHz,內部MOS激勵管的耐壓為700 V,輸出功率小於45 W。電路如圖1所示,該電路可以獲得更大的輸出功率,只需更改部分器件。圖1中左邊的電路R1,L1,D1,C1至C7是常規的共模濾波和整流電路,獲取約300 V的直流電壓供DC-DC變換電路使用;最右邊電路L5,C11等是普通的LC濾波電路;IC2,D8,R9,R10組成電壓反饋電路,形成閉環結構,穩定電源輸出電壓;中間部分是DC-DC變換器,降噪聲的關鍵是對這一部分的電路進行適當處理。

對於中間部分電路而言,TOP224Y作為PWM控制、激勵,都是常規處理。控制端C的工作電壓取自變壓器的反激勵電壓,其中D3是整流管,D4是發光二極體,用作指導燈。C端的反饋信號來自IC2的輸出。晶片的漏極輸出端D連接變壓器和R1,D2,其中R1是半導體壓敏電阻,與D2一起組成晶片限壓保護電路,防止晶片因過壓而擊穿。該項電路的激勵方式採用以正激勵為主的正、反混合激勵式,變壓器有4個繞組,其中2個是基本相似的輸出繞組n3,n4,它的同名端關係如圖2所示。

DC-DC變換後的整流管使用了三隻:D5,D6和D7,沒有獨立設置續流二極體,不同於其他電源電路。D5為續流而設置的復用二極體,D6和是正激勵脈衝整流二極體,D7是反激勵電壓整流二極體。L4是DC-DC變換後的第一級濾波電感。在正激勵期間,變壓器輸出繞組n3經D6,L4輸出電流,第一級濾波電感L4中電流i4增大,同時,變壓器自身利益的激勵磁電流i1也在增大。

當正激勵結束馬上就進入反激勵階段,濾波電感L4中電流i4將從原值逐步減小。而變壓器中也會保持勵磁電流,但它是多繞組結構,勵磁電流可以出現在任意一個繞組中,各電流方向以維持原磁場方向為準。如果控制當時的濾波電感電流i4》n1i1/n4,可以將變壓器磁芯中的勵磁電流全部轉移至n4繞組。也就是電流i4流經變壓器輸出繞組n4,除了維持變壓器磁芯磁場,尚有多餘,其餘量在n4與n3中按匝數比分配。此時,二極體D5馬上導通,二極體D6繼續導通,而二極體D7仍然截止。變壓器繞組無感生電壓,不放釋放磁場能。隨著濾波電感儲能的釋放,電流i4逐步減小,直至i4=n1i1/n4時,D6進入截止狀態。可見D6沒有被除數強迫截止,處理得當,可以消除其關斷噪聲。接著,變壓器開始產生反激勵電動勢而釋放儲能,二極體D7開始導通,變壓器的反激勵電壓被限制。直到變壓器儲能釋放盡,等待下一個周期的激勵。

按照這一方法處理,可以消除整流二極體D6的硬關斷噪聲,但變壓器漏感造成的晶片激勵管的硬關斷噪聲仍然存在,這裡的輔助繞組可以起到一定的吸收作用。對於整流二極體的硬開通噪聲,仍採用RC電路吸收能量,降低噪聲,如圖1中的R7,C10電路。

2 主要器件參數的設定

2.1 確定變壓器參數

電路的正激勵電壓U為300 V,根據晶片的反向耐壓參數和可靠性要求,反激電壓設為200 V。開關周期為10μs,因此,其中正激勵時間為t1=4.0 μs,反激勵時間為t2=6.0 μs。按照15 W反激勵輸出功率計算,每一個周期裡變壓器儲能應該達到150μJ,即Li1m2=300μJ而Lilm=U1t1,所以有:

式中:i1m為變壓器初級線圈的最大電流值(單位:A)。可以算得變壓器初級繞組的電感量L0應該達到4.8 mH。若該電感量取得再大一些也可以,只是反激勵能量會減小,要更多地依靠正激勵輸出。

對於變壓器初級繞組的匝數.按照40 W輸出功率的要求,變壓器可以採用E128錳鋅鐵氧體磁芯,其平均磁路長度為56 mm,中心磁芯截面積Ae1為77 mm2。這一規格的變壓器為了避免磁芯出現磁飽和,初級繞組的最少匝數為:

Bmax是變壓器磁芯允許的最大磁感應強度。為了達到4.8 mH電量的初級繞組匝數:

顯然,繞制75匝磁路閉合時已接近磁飽和狀態。為了可靠起見,增加初級繞組匝數,控制在80~100匝間,這裡取為100匝。同時,在磁路中設置氣隙以增加磁路磁阻Rm。氣隙厚度通常根據實際測試情況確定。這類單極性激勵電路將變壓器輸出繞組設計成不對稱結構。根據輸出20 V輸出電壓的限制,輸出繞組n4反激電壓定為21 V,變比n=200:21=9.5。反激勵輸出繞組n4的匝數根據變壓比可確定為各11匝;輸出繞組n3正激電壓定為20/0.4=50 V。正激勵輸出繞組n3的匝數為100x 50/300=16匝;反饋電壓採用反激勵輸出,以穩定輸出電壓值。按照200:15計算,繞組的匝數為8匝。按照以上這些參數,合理繞制變壓器。

2.2 確定第一級濾波電感參數

第一濾波電感的電感量確定原則是:在變壓器的正激勵期間,濾波電感中形成的勵磁電流i4足以維持變壓器雄姿磁芯中勵磁的需要。如果是大電流輸出,按連續濾波考慮,L4的電感量取值為:

式中:n是變壓器的反激匝比,在此為9.5;U1是原邊正激勵電壓;U2是副邊正激勵電壓;U0是電源輸出的直流電壓。如果是小電流輸出,按斷續濾波考慮,L4的電感量為:

考慮不同輸出電流均能符合續流要求,第一濾波電感L4的電感量可以取為45μH,這一電感量不能取得過小。

濾波器磁芯的材料一般採用粉芯磁環,它比鐵氧體磁芯的儲能值大。若選用φ22鐵粉芯磁環,其平均磁路長度為50 mm,磁芯橫截面積Ac2為6×11 mm2,相對磁導率為70。達到50μH的線圈匝數為:

濾波器不飽和最大工作電流與磁芯材料的關係為Imax=(BmaxAe2Rm/N)=(Bmaxl/μ0μτN)。由此算得允許的最大工作電流為16 A,遠大於電源的實際輸出電流,不會出現磁飽和,可以放心使用。該濾波實際在φ22鐵粉芯磁環上繞26匝,實測為0.048 mH。

2.3 確定其他主要元件參數

第二級濾波電感器也採用同規格的鐵粉芯磁環,在不出現磁飽和的條件下,電感量以大為好,一般要達到100μH以上。

濾波電容的容量在體積與成本許可的條件下,以大為好,一般取1 000μF左右。而且要將電解電容器與高速的CBB電容順聯合使用,以提高高頻脈衝的濾波能力。

高頻整流二極體應採用快恢復管或者肖特基管,否則,開關噪聲還是難以消除。各二極體的最大整流電流值在2 A以上,反向耐壓參數在80 V以上。為了降低共模傳導和輻射騷擾,開關電源在裝配時應該保證高頻交流信號共地結構,採取有效的電磁屏蔽等措施。

3 電源測試與效果

這一例開關電源電磁騷擾抑制技術主要依靠變壓器與濾波器互相協調工作實現的,可以稱之為系統互補抑制噪聲技術。該電源經過實驗室測試,其輸出噪聲相比採用同樣器件的常規電源低得多。圖3是兩者輸出埠噪聲電壓波形的比較,其中,圖3(a)是普通電路的效果,圖3(b)是系統互補抑制噪聲技術的效果。在圖3(b)中的噪聲波形已經包含部分共模輻射噪聲波形(淡灰色部分),實際差模噪聲電壓比圖中的幅度還要小,在20 mV以下。這一點可以將示波器探頭芯線與地線短接後,單點連接電源輸出端顯示波形加以證明。如果是差模電壓,不會在單點連接時顯示在示波器上,共模噪聲電壓則會顯示。而且,不管連接在正極還是負極上,顯示波形幅度與特徵均相同。共模噪聲幅度需要在接地方式和加裝外屏蔽殼進行抑制。

4 結 語

系統互補抑制噪聲技術可以大幅度地降低差模噪聲電壓輸出。從開關器件上電流、電壓變化的特點上看,這一種設計實際是降低了開關器件的硬特性要求,對於提高電路的工作效率也十分有效。所製作的整個電源裝置發熱情況比較理想,說明工作效率較高。開關電源產生電磁騷擾的最主要原因是開關器件上的電流發生突變,合理使用電感器可以很好地抑制這種電磁騷擾。

以上重點對於一種新的抑制電磁騷擾技術進行設計,開關電源的電磁噪聲產生的因素有很多,應該有針對性地逐個加以排除,才能獲得性能比較完善的電源裝置。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • IGBT逆變焊機電磁騷擾的抑制
    IGBT 逆變焊機的逆變器大多採用了 PWM 脈衝寬度調製技術,焊機輸入整流器引起的電流畸變會產生諧波騷擾,IGBT 高速開關時會產生大量耦合性噪聲,對與逆變焊機共處同一電源環境的其他的電子、電氣設備來說,逆變焊機是一個電磁幹擾源,且長期以來未得到重視和採取有效措施加以改善,GB15579.10-2008 實施的目的之一就是要解決弧焊設備造成的電網汙染問題。
  • 高頻開關電源的EMC電磁兼容整改問題分析
    高頻開關電源自身存在的電磁騷擾(EMI)問題如果處理不好,不僅容易對電網造成汙染,直接影響其他用電設備的正常工作,而且傳入空間也易形成電磁汙染,由此產生了高頻開關電源的電磁兼容(EMC)問題。文章重點對鐵路信號電源屏使用的1200W(24V/50A)高頻開關電源模塊所存在的電磁騷擾超標問題進行分析,並提出改進措施。
  • 探討高頻開關電源設計中的電磁兼容問題
    目前,電子產品的電磁兼容性(EMC)日益受到重視,抑制開關電源的EMI,提高電子產品的質量,使之符合EMC標準,已成為電子產品設計者越來越關注的問題。本文就高頻開關電源設計中的電磁兼容性問題進行了探討。
  • 淺析高頻開關電源的電磁兼容(EMC)問題的解決辦法
    與此同時,高頻開關電源自身存在的電磁騷擾(EMI)問題如果處理不好,不僅容易對電網造成汙染,直接影響其他用電設備的正常工作,而且傳入空間也易形成電磁汙染,由此產生了高頻開關電源的電磁兼容(EMC)問題。 本文重點對鐵路信號電源屏使用的1200W(24V/50A)高頻開關電源模塊所存在的電磁騷擾超標問題進行分析,並提出改進措施。高頻開關電源產生的電磁騷擾可分為傳導騷擾和輻射騷擾兩大類。
  • 開關電源電磁幹擾的產生機理與抑制技術
    自從2003年8月1日中國強制實施3C認證(china compulsory certification)工作以來,掀起了「電磁兼容熱」,近距離的電磁幹擾研究與控制愈來愈引起電子研究人員們的關注,當前已成為當前研究領域的一個新熱點。本文將針對開關電源電磁幹擾的產生機理系統地論述相關的抑制技術。l 開關電源電磁幹擾的抑制形成電磁幹擾的三要素是幹擾源、傳播途徑和受擾設備。
  • 開關電源、數字電路、逆變器產生脈衝電壓,發出強烈的電磁騷擾
    電子設備中,主要有兩種典型的電磁騷擾源電路,一個是二次電源模塊,另一個是數字電路。實際上,正是由於開關電源技術和數字電路的廣泛應用,幹擾的問題才日益突出。二次電源之所以成為電磁騷擾源,是因為他的工作原理是對直流電壓斬波,將連續的直流電壓變成脈衝電壓。
  • 為什麼開關電源會產生emi,有什麼抑制方法
    然而,開關電源自身產生的各種電磁騷擾佔有很寬的頻帶和較強的幅度,如果控制不當會通過傳導和輻射對周圍設備產生電磁幹擾,汙染電磁環境,成為一個很強的電磁幹擾源。這些幹擾隨著開關頻率的提高、輸出功率的增大而明顯地增強,對電子設備的正常運行構成了潛在的威脅。
  • 開關電源產生電磁幹擾的具體原因與抑制方法解析
    打開APP 開關電源產生電磁幹擾的具體原因與抑制方法解析 佚名 發表於 2019-11-04 16:07:05 關於開關電源EMI
  • 如何搞定開關電源EMC設計中難纏的電磁幹擾?
    打開APP 如何搞定開關電源EMC設計中難纏的電磁幹擾?那麼,在開關電源的電路設計過程中應該怎麼做才能使其符合EMC審核標準呢?要解決開關電源的電磁幹擾問題,可從以下幾個方面入手。   減少開關電源本身的幹擾   工程師可以通過一些技術手段的合理選擇和使用,來減少開關電源本身所產生的電磁幹擾。目前比較常用的有軟開關技術、開關頻率調製技術、共模幹擾的有源抑制技術等等。
  • 工程師不可不知的開關電源關鍵設計(五)
    2 電磁兼容技術名詞  (1)電磁兼容性  電磁兼容性是指設備或者系統在其電磁環境中能正常工作,且不對該環境中任何事物構成不能承受的電磁騷擾的能力。  (2)電磁騷擾  電磁騷擾是指任何可能引起設備、裝備或系統性能降低或者對有生命或者無生命物質產生損害作用的電磁現象。電磁騷擾可引起設備、傳輸通道或系統性能的下降。
  • 工程師不可不知的開關電源關鍵設計(四)
    2 電磁兼容技術名詞  (1)電磁兼容性  電磁兼容性是指設備或者系統在其電磁環境中能正常工作,且不對該環境中任何事物構成不能承受的電磁騷擾的能力。  (2)電磁騷擾  電磁騷擾是指任何可能引起設備、裝備或系統性能降低或者對有生命或者無生命物質產生損害作用的電磁現象。電磁騷擾可引起設備、傳輸通道或系統性能的下降。
  • 開關電源電磁幹擾與出現電感嘯叫聲音的解決方法
    本文引用地址:http://www.eepw.com.cn/article/201710/365295.htm  開關電源電磁幹擾的解決:  開關電源存在著共模幹擾和差模幹擾兩種電磁幹擾形式。根據分析的電磁幹擾源, 結合它們的耦合途徑, 可以從EMI 濾波器、吸收電路、接地和屏蔽等幾個方面來抑制幹擾, 把電磁幹擾衰減到允許限度之內。
  • 大功率開關電源的EMC測試分析及正確選擇EMI濾波器
    對電子設備的正常運行構成了潛在的威脅,因此解決開關電源的電磁幹擾是減小電網汙染的必要手段,本文對一臺15kW開關電源的EMC測試,分析其測試結果,並介紹如何合理地正確選擇EMI濾波器,以達到理想的抑制效果。
  • 磁珠在開關電源電磁兼容設計中的應用
    電磁兼容方面的重要性,以求為開關電源產品設計者在設計新產品時提供更多、更好的選擇。因此採用有效元件把它們限制到最小程度是抑制噪聲的主要方法之一。通常採用非線性飽和電感來抑制反向恢復電流尖峰,此時鐵芯的工作狀態是從-Bs 到+Bs。根據在開關電源續流二極體上的高磁導率與可飽和性的超小型電感元件—磁珠特性的一致性,開發出用來抑制開關電源開關時產生的峰值電流的尖峰抑制器。
  • 共模電感在開關電源的應用?
    打開APP 共模電感在開關電源的應用?理想的共模扼流圈對L(或N)與E 之間的共模幹擾具有抑制作用,而對L 與N 之間存在的差模幹擾無電感抑制作用。但實際線圈繞制的不完全對稱會導致差模漏電感的產生。信號電流或電源電流在兩個繞組中流過時方向相反,產生的磁通量相互抵消,扼流圈呈現低阻抗。共模噪聲電流(包括地環路引起的騷擾電流,也處稱作縱向電流)流經兩個繞組時方向相同,產生的磁通量同向相加,扼流圈呈現高阻抗,從而起到抑制共模噪聲的作用。
  • 抑制同步開關噪聲的超帶寬電磁帶隙結構的研究
    本文引用地址:http://www.eepw.com.cn/article/259489.htm本文針對抑制印刷電路板中電源平面與接地平面之間的同步開關噪聲
  • 如何降低開關電源中產生的EMI輻射
    開關電源意味著器件內部有電子開關,EMI可通過它產生輻射。 本文將介紹開關電源中EMI的來源以及降低EMI的方法或技術。本文還將向您展示電源模塊(控制器、高側和低側FET及電感器封裝為一體)如何幫助降低EMI。 開關電源中EMI的來源 首先,必須尊重物理定律。根據麥克斯韋方程組,交流電可產生電磁場。
  • 開關電源的電磁幹擾分析 PCB布局及布線介紹
    開關電源的電磁幹擾分析 PCB布局及布線介紹 工程師3 發表於 2018-04-26 16:19:00 開關電源因體積小、功率因數較大等優點,在通信
  • 開關電源EMI設計與整改策略100條!
    EMC的分類及標準本文引用地址:http://www.eepw.com.cn/article/201704/346617.htm  EMC(Electromagnetic Compatibility)是電磁兼容,它包括EMI(電磁騷擾)和EMS(電磁抗騷擾)。
  • 如何順利通過電磁兼容試驗
    2.1 電子、電氣產品內的主要電磁騷擾源  設備開關電源的開關迴路:騷擾源主頻幾十kHz 到百餘kHz,高次諧波可延伸到數十MHz。  設備直流電源的整流迴路:工頻整流噪聲頻率上限可延伸到數百kHz;高頻整流噪聲頻率上限可延伸到數十MHz。  電動設備直流電機的電刷噪聲:噪聲頻率上限可延伸到數百MHz。