學會分析這八大模擬電路,電路設計能力提升一個臺階

2021-01-21 multisim

在電子電路中,電源、放大、振蕩和調製電路被稱為模擬電子電路,因為它們加工和處理的是連續變化的模擬信號。



1. 反饋
反饋是指把輸出的變化通過某種方式送到輸入端,作為輸入的一部分。如果送回部分和原來的輸入部分是相減的,就是負反饋。



2. 耦合
一個放大器通常有好幾級,級與級之間的聯繫就稱為耦合。放大器的級間耦合方式有三種:


①RC 耦合(見圖a): 優點是簡單、成本低。但性能不是最佳。


② 變壓器耦合(見圖b):優點是阻抗匹配好、輸出功率和效率高,但變壓器製作比較麻煩。


③ 直接耦合(見圖c): 優點是頻帶寬,可作直流放大器使用,但前後級工作有牽制,穩定性差,設計製作較麻煩。



3. 功率放大器


能把輸入信號放大並向負載提供足夠大的功率的放大器叫功率放大器。例如收音機的末級放大器就是功率放大器。


3.1 甲類單管功率放大器




負載電阻是低阻抗的揚聲器,用變壓器可以起阻抗變換作用,使負載得到較大的功率。

這個電路不管有沒有輸入信號,電晶體始終處於導通狀態,靜態電流比較大,困此集電極損耗較大,效率不高,大約只有 35 %。這種工作狀態被稱為甲類工作狀態。這種電路一般用在功率不太大的場合,它的輸入方式可以是變壓器耦合也可以是 RC 耦合。


3.2 乙類推挽功率放大器


下圖是常用的乙類推挽功率放大電路。




它由兩個特性相同的電晶體組成對稱電路,在沒有輸入信號時,每個管子都處於截止狀態,靜態電流幾乎是零,只有在有信號輸入時管子才導通,這種狀態稱為乙類工作狀態。當輸入信號是正弦波時,正半周時 VT1 導通 VT2 截止,負半周時 VT2 導通 VT1 截止。兩個管子交替出現的電流在輸出變壓器中合成,使負載上得到純正的正弦波。這種兩管交替工作的形式叫做推挽電路。


3.3 OTL 功率放大器


目前廣泛應用的無變壓器乙類推挽放大器,簡稱 OTL 電路,是一種性能很好的功率放大器。為了易於說明,先介紹一個有輸入變壓器沒有輸出變壓器的 OTL 電路,如下圖所示。


4. 直流放大器


能夠放大直流信號或變化很緩慢的信號的電路稱為直流放大電路或直流放大器。測量和控制方面常用到這种放大器。


4.1 雙管直耦放大器


直流放大器不能用 RC 耦合或變壓器耦合,只能用直接耦合方式。下圖是一個兩級直耦放大器。直耦方式會帶來前後級工作點的相互牽制,電路中在 VT2 的發射極加電阻 R E 以提高後級發射極電位來解決前後級的牽制。
直流放大器的另一個更重要的問題是零點漂移。所謂零點漂移是指放大器在沒有輸入信號時,由於工作點不穩定引起靜 態電位緩慢地變化,這種變化被逐級放大,使輸出端產生虛假信號。放大器級數越多,零點漂移越嚴重。所以這種雙管直耦放大器只能用於要求不高的場合。


4.2 差分放大器


解決零點漂移的辦法是採用差分放大器,下圖是應用較廣的射極耦合差分放大器。它使用雙電源,其中 VT1 和 VT2 的特性相同,兩組電阻數值也相同, R E 有負反饋作用。實際上這是一個橋形電路,兩個 R C 和兩個管子是四個橋臂,輸出電壓 V 0 從電橋的對角線上取出。沒有輸入信號時,因為 RC1=RC2 和兩管特性相同,所以電橋是平衡的,輸出是零。由於是接成橋形,零點漂移也很小。差分放大器有良好的穩定性,因此得到廣泛的應用。


5. 集成運算放大器

集成運算放大器是一種把多級直流放大器做在一個集成片上,只要在外部接少量元件就能完成各種功能的器件。因為它早期是用在模擬計算機中做加法器、乘法器用的,所以叫做運算放大器。

6. 振蕩器


不需要外加信號就能自動地把直流電能轉換成具有一定振幅和一定頻率的交流信號的電路就稱為振蕩電路或振蕩器。這種現象也叫做自激振蕩。或者說,能夠產生交流信號的電路就叫做振蕩電路。
一個振蕩器必須包括三部分:放大器、正反饋電路和選頻網絡。放大器能對振蕩器輸入端所加的輸入信號予以放大使輸出信號保持恆定的數值。正反饋電路保證向振蕩器輸入端提供的反饋信號是相位相同的,只有這樣才能使振蕩維持下去。選頻網絡則只允許某個特定頻率f0能通過,使振蕩器產生單一頻率的輸出。
振蕩器能不能振蕩起來並維持穩定的輸出是由以下兩個條件決定的;一個是反饋電壓Uf和輸入電壓 Ui要相等,這是振幅平衡條件。二是 Uf 和 Ui 必須相位相同,這是相位平衡條件,也就是說必須保證是正反饋。一般情況下,振幅平衡條件往往容易做到,所以在判斷一個振蕩電路能否振蕩,主要是看它的相位平衡條件是否成立。
振蕩器按振蕩頻率的高低可分成超低頻( 20赫以下)、低頻( 20赫~ 200千赫)、高頻(200千赫~ 30兆赫)和超高頻( 10兆赫~ 350兆赫)等幾種。按振蕩波形可分成正弦波振蕩和非正弦波振蕩兩類。
正弦波振蕩器按照選頻網絡所用的元件可以分成 LC 振蕩器、 RC振蕩器和石英晶體振蕩器三種。石英晶體振蕩器有很高的頻率穩定度,只在要求很高的場合使用。在一般家用電器中,大量使用著各種 LC振蕩器和 RC 振蕩器。

6.1 LC振蕩器


LC 振蕩器的選頻網絡是LC 諧振電路。它們的振蕩頻率都比較高,常見電路有 3 種。
1) 變壓器反饋 LC 振蕩電路

圖(a)是變壓器反饋 LC 振蕩電路。電晶體 VT 是共發射極放大器。變壓器 T 的初級是起選頻作用的 LC 諧振電路,變壓器 T 的次級向放大器輸入提供正反饋信號。接通電源時, LC 迴路中出現微弱的瞬變電流,但是只有頻率和迴路諧振頻率 f 0 相同的電流才能在迴路兩端產生較高的電壓,這個電壓通過變壓器初次級 L1 、 L2 的耦合又送回到電晶體 V 的基極。從圖(b)看到,只要接法沒有錯誤,這個反饋信號電壓是和輸入信號電壓相位相同的,也就是說,它是正反饋。因此電路的振蕩迅速加強並最後穩定下來。
變壓器反饋 LC 振蕩電路的特點是:頻率範圍寬、容易起振,但頻率穩定度不高。它的振蕩頻率是: f 0 =1/2π LC 。常用於產生幾十千赫到幾十兆赫的正弦波信號。
2) 電感三點式振蕩電路

圖(a)是另一種常用的電感三點式振蕩電路。圖中電感 L1 、 L2 和電容 C 組成起選頻作用的諧振電路。從 L2 上取出反饋電壓加到電晶體 VT 的基極。從圖(b)看到,電晶體的輸入電壓和反饋電壓是同相的,滿足相位平衡條件的,因此電路能起振。由於電晶體的 3 個極是分別接在電感的 3 個點上的,因此被稱為電感三點式振蕩電路。
電感三點式振蕩電路的特點是:頻率範圍寬、容易起振,但輸出含有較多高次調波,波形較差。它的振蕩頻率是: f 0 =1/2π LC ,其中 L=L1 + L2 + 2M 。常用於產生幾十兆赫以下的正弦波信號。
3) 電容三點式振蕩電路

還有一種常用的振蕩電路是電容三點式振蕩電路,見圖(a)。圖中電感 L 和電容 C1 、 C2 組成起選頻作用的諧振電路,從電容 C2 上取出反饋電壓加到電晶體 VT 的基極。從圖(b)看到,電晶體的輸入電壓和反饋電壓同相,滿足相位平衡條件,因此電路能起振。由於電路中電晶體的 3 個極分別接在電容 C1 、 C2 的 3 個點上,因此被稱為電容三點式振蕩電路。
電容三點式振蕩電路的特點是:頻率穩定度較高,輸出波形好,頻率可以高達 100 兆赫以上,但頻率調節範圍較小,因此適合於作固定頻率的振蕩器。它的振蕩頻率是: f 0 =1/2π LC ,其中 C= C 1 +C 2 。
上面 3 種振蕩電路中的放大器都是用的共發射極電路。共發射極接法的振蕩器增益較高,容易起振。也可以把振蕩電路中的放大器接成共基極電路形式。共基極接法的振蕩器振蕩頻率比較高,而且頻率穩定性好。

6.2 RC 振蕩器


RC 振蕩器的選頻網絡是 RC 電路,它們的振蕩頻率比較低。常用的電路有兩種。
1) RC 相移振蕩電路

RC 相移振蕩電路的特點是:電路簡單、經濟,但穩定性不高,而且調節不方便。一般都用作固定頻率振蕩器和要求不太高的場合。它的振蕩頻率是:當 3 節 RC 網絡的參數相同時: f 0 = 1 2π 6RC 。頻率一般為幾十千赫。
2) RC 橋式振蕩電路

RC 橋式振蕩電路的性能比 RC 相移振蕩電路好。它的穩定性高、非線性失真小,頻率調節方便。它的振蕩頻率是:當 R1=R2=R 、 C1=C2=C 時 f 0 = 1 2πRC 。它的頻率範圍從 1 赫~ 1 兆赫。

7. 調幅和檢波電路


廣播和無線電通信是利用調製技術把低頻聲音信號加到高頻信號上發射出去的。在接收機中還原的過程叫解調。其中低頻信號叫做調製信號,高頻信號則叫載波。常見的連續波調製方法有調幅和調頻兩種,對應的解調方法就叫檢波和鑑頻。

7.1 調幅電路


調幅是使載波信號的幅度隨著調製信號的幅度變化,載波的頻率和相位不變。能夠完成調幅功能的電路就叫調幅電路或調幅器。
調幅是一個非線性頻率變換過程,所以它的關鍵是必須使用二極體、三極體等非線性器件。根據調製過程在哪個迴路裡進行可以把三極體調幅電路分成集電極調幅、基極調幅和發射極調幅 3 種。下面舉集電極調幅電路為例。

上圖是集電極調幅電路,由高頻載波振蕩器產生的等幅載波經 T1 加到電晶體基極。低頻調製信號則通過 T3 耦合到集電極中。 C1 、 C2 、 C3 是高頻旁路電容, R1 、 R2 是偏置電阻。集電極的 LC 並聯迴路諧振在載波頻率上。如果把三極體的靜態工作點選在特性曲線的彎曲部分,三極體就是一個非線性器件。因為電晶體的集電極電流是隨著調製電壓變化的, 所以集電極中的 2 個信號就因非線性作用而實現了調幅。由於 LC 諧振迴路是調諧在載波的基頻上,因此在 T2 的次級就可得到調幅波輸出。

7.2 檢波電路


檢波電路或檢波器的作用是從調幅波中取出低頻信號。它的工作過程正好和調幅相反。檢波過程也是一個頻率變換過程,也要使用非線性元器件。常用的有二極體和三極體。另外為了取出低頻有用信號,還必須使用濾波器濾除高頻分量,所以檢波電路通常包含非線性元器件和濾波器兩部分。下面舉二極體檢波器為例說明它的工作原理。

上圖是一個二極體檢波電路。 VD 是檢波元件, C 和 R 是低通濾波器。當輸入的已調波信號較大時,二極體 VD 是斷續工作的。正半周時,二極體導通,對 C 充電;負半周和輸入電壓較小時,二極體截止, C 對 R 放電。在 R 兩端得到的電壓包含的頻率成分很多,經過電容 C 濾除了高頻部分,再經過隔直流電容 C0 的隔直流作用,在輸出端就可得到還原的低頻信號。

8. 調頻和鑑頻電路


調頻是使載波頻率隨調製信號的幅度變化,而振幅則保持不變。鑑頻則是從調頻波中解調出原來的低頻信號,它的過程和調頻正好相反。

8.1 調頻電路


能夠完成調頻功能的電路就叫調頻器或調頻電路。常用的調頻方法是直接調頻法,也就是用調製信號直接改變載波振蕩器頻率的方法。下圖畫出了它的大意,圖中用一個可變電抗元件並聯在諧振迴路上。用低頻調製信號控制可變電抗元件參數的變化,使載波振蕩器的頻率發生變化。


8.2 鑑頻電路


能夠完成鑑頻功能的電路叫鑑頻器或鑑頻電路,有時也叫頻率檢波器。鑑頻的方法通常分二步,第一步先將等幅的調頻波變成幅度隨頻率變化的調頻 — 調幅波,第二步再用一般的檢波器檢出幅度變化,還原成低頻信號。常用的鑑頻器有相位鑑頻器、比例鑑頻器等。

相關焦點

  • RC振蕩電路的設計與分析
    打開APP RC振蕩電路的設計與分析 本站 發表於 2008-10-30 15:28:15 RC振蕩電路的設計與分析1.
  • 電路設計中可靠性和抗幹擾能力提升的注意事項
    本文從最基本、最常用的電子元器件和基本電路的著手,介紹電路設計時應該注意的一些問題, 以提高所設計電路的可靠性和抗幹擾能力。放大狀態亦稱為線性工作狀態,Ic=ß·Ib,用在模擬電路中。截止和飽和狀態也稱為開關狀態,應用於數字電路中。  6,電源  實際電路中,電源存在內阻,相當於串聯一個電阻,此時輸出電壓就會有所下降,對電路中的幹擾不可忽略。
  • gm/Id的模擬電路設計方法——設計一個電流偏置
    來源:IC技能搬運工 gm/Id的模擬電路設計方法需要的基礎內容以及曲線繪製已經跟大家介紹過了,今天講一個基於此方法的設計實例。 電流源電路原理 下面的電流源電路是拉扎維書上的一個例子,該電路實現的原理是:假設所有條件都理想,那麼相同電流流過不同尺寸的MOS管時,兩個MOS管的柵源電壓不同,利用這個電壓差可以產生需要的電流。
  • 線路板快速打樣工程師設計模擬電路的方法
    打開APP 線路板快速打樣工程師設計模擬電路的方法 發表於 2019-06-15 11:03:50 金氧半場效電晶體並非始終是模擬線路板快速打樣電路設計工程師的首選
  • 學會模擬電路基礎,高分妥妥滴~~~
    導讀:本文主要介紹半導體二極體及基本電路,這是學好模擬電路的關鍵所在,希望這些對親們有所幫助哦!!!!本文引用地址:http://www.eepw.com.cn/article/268568.htm一.
  • 淺談模擬電路中波特圖技術分析
    打開APP 淺談模擬電路中波特圖技術分析 工程師飛燕 發表於 2018-11-09 09:57:02 在模擬電路中,波特圖佔據一個非常重要的地位
  • 「模擬電路」電晶體放大電路設計、製作與測試
    實 驗 報 告課程名稱:模擬電路技術實驗實驗一:電晶體放大電路設計、製作與測試一、實驗設備Multisim虛擬仿真工具手工焊裝工具萬用表信號發生器示波器電子元器件若干等二、實驗原理1、電路設計規格(指標):要求
  • 論模擬電路的人才培養之道
    以前我們也招了很多實習生,這對提升他們的應用能力是非常有作用的。學校應該搞開放式的教學。  胡覺新:我的工作,在國家半導體很雜。其中一個工作,就是跟大學合作。今天到交大來,很高興。我們看到周玲玲教授講的一些基本問題,還有徐國治教授講的一些問題。我有幾個體會。
  • 萬用表電路設計方案匯總(幾款模擬設計電路原理圖詳解)
    萬用表電路設計方案匯總(幾款模擬設計電路原理圖詳解) 時間:2019-01-18 18:37 萬用表 模擬電路
  • 模擬電路與數字電路之間的區別
    模擬電路是處理模擬信號的電路;數字電路是處理數位訊號的電路。模擬信號是關於時間的函數,是一個連續變化的量,數位訊號則是離散的量。因為所有的電子系統都是要以具體的電子器件,電子線路為載體的,在一個信號處理中,信號的採集,信號的恢復都是模擬信號,只有中間部分信號的處理是數字處理。
  • 高速電路設計和信號完整性分析
    為了解決這個問題,在設計高速電路時必須進行信號完整性分析,採用虛擬樣板對系統進行透徹仿真,精確分析電路的布局布線對信號完整性的影響,並以此來指導電路的設計。這樣,以往很多在調試時才能發現的問題,在設計期間就可以解決,極大地提高了設計成功率,縮短了設計周期。 要對信號進行完整性分析,首先要建立精確的器件模型。
  • 基於Freescale單片機的雙極模擬信號電路設計
    文中介紹了一種使Freescale單片機A/D轉換模塊能夠接收雙極型模擬信號的電路設計,文中電路採用對稱設計,擴大了A/D轉換的量程,提高了A/D轉換的解析度。但單片機的模擬輸入端只能接受單極正向模擬信號,不能直接進行雙極模擬信號的模數轉換,為此必須把雙極模擬信號轉換成單極正向模擬信號。在一般的設計中,常常要把形如-ui-+ui的雙極型模擬信號通過電位平移電路轉換成0~5 V單極信號,而這種平移電路會使得A/D轉換的精度降低一倍,而且穩定性也降低。
  • 雙管自激振蕩電路設計分析
    打開APP 雙管自激振蕩電路設計分析 發表於 2017-11-30 18:06:57 自激振蕩的應用於許多電路,如正弦波振蕩器廣泛用於各種電子設備中,在模擬電子技術中屬於必不可少的一種元件。它是一種不需要輸入信號控制就能自動地將直流能量轉換為特定頻率和振幅的正弦交變能量的電路。常見的自激振蕩電路如RC振蕩電路和LC振蕩電路。RC振蕩電路中,RC網絡既是選頻網絡又是正反饋電路中的一部分。該電路特點是電路簡單,經濟但穩定性不高。
  • 實現三相不控整流電路的PFC設計分析
    在今天的文章中,我們將會通過一個實際案例,來為各位新人工程師們進行實例解析,看在三相不控整流電路中應當如何有效實現其PFC設計。本文引用地址:http://www.eepw.com.cn/article/201605/291000.htm  三相不控整流電路是一種在中小功率開關電源設計中,比較常見的電路設計類型。
  • 簡易示波器和信號源模擬電路的設計及仿真結果
    電路設計、仿真,終於全部搞定: 示波器模擬部分的電路結構及仿真結果: 輸入的信號及差分輸出送往ADC的模擬信號 用LTSpice仿真的電路的頻譜響應曲線 的輸出信號(實際指標為最大5MHz) 模擬電路部分的頻域響應 電路的拓撲結構驗證完畢
  • 射頻接收系統晶體振蕩電路的設計與分析
    振蕩電路的確定  對振蕩電路的選擇取決於對工作頻率、頻率穩定度的要求,同時還要考慮射頻接收小型化、低功耗及其他要求。晶體振蕩電路應設計成結構簡單、功耗小、調試方便並且頻率可以微調的電路。經過分析,確定採用如圖1所示的結構。該電路為電容三點式振蕩,是串聯式晶體振蕩電路。
  • 一種基於FPGA的全光纖電流互感器控制電路設計
    相比之下,光纖電流互感器具有抗電磁幹擾能力強、絕緣可靠、測量精度高、結構簡單和體積小巧等諸多優點,是當前研究熱點。作為光纖電流互感器的核心部件,其檢測和控制電路對電流檢測精度和範圍具有非常重要的影響。因此前置放大及濾波電路對有用信號的放大和對噪聲抑制能力會影響後續測量精度。前置放大電路採用差分運放AD8130,該晶片具有非常高的共模抑制比,特別適用於微弱信號放大中需要低噪聲、低諧波失真和高共模抑制比的應用中。
  • PCB電路設計中的瞬態信號分析
    討論的第一個主題是阻尼振蕩器電路和瞬態信號響應,它出現在許多不同的物理系統中。互連中以及PCB中電源線上的瞬態響應是導致位錯誤,時序抖動和其他信號完整性問題的原因。您可以確定採用瞬態信號分析來設計完美電路的過程中要採取的設計步驟。 可以手動檢查和計算簡單電路中的瞬態信號分析,從而可以繪製瞬態響應隨時間的變化曲線。更複雜的電路可能難以手動分析。
  • 三位前輩教你怎樣學好模擬電路
    25iednc模擬電路學來幹什麼? 25iednc我想回答一下這個問題。這是一個重要的問題。很多人有疑問,現在是一個數字時代,我為什麼要學模擬電路。zhihu裡面還有一個問題是「模擬電路設計師會不會消失掉」25iednc答案是:不會的。
  • 實現模擬/RF設計復用的ADI實驗室電路很實用
    在電子設計中,模擬/RF設計一直是最讓設計師頭疼的部分,傳統上,模擬射頻器件供應商一般只提供器件的datasheet以及若干參考設計,但 是,要讓器件運轉正常,設計師需要更多實際電路的評估和測試,這方面需要時間和經驗的積累,也是非常耗費精力財力的,有沒有什麼辦法讓設計師可以加快這方 面的設計呢?