[ 導讀 ]近年來,機器學習等新最新技術層出不窮,如何跟蹤最新的熱點以及最新資源,作者Robbie Allen列出了一系列相關資源教程列表,包含四個主題:機器學習,自然語言處理,Python和數學,建議大家收藏學習!
本文包含了迄今為止我發現的最好的一些教程內容。它絕不是網上每個ML相關教程的簡單詳盡列表(這個工作量無疑是十分巨大而又枯燥重複的),而是經過詳細篩選後的結果。我的目標就是將我在機器學習和自然語言處理領域各個方面找到的我認為最好的教程整理出來。
在教程中,為了能夠更好的讓讀者理解其中的概念,我將避免羅列書中每章的詳細內容,而是總結一些概念性的介紹內容。為什麼不直接去買本書?當你想要對某些特定的主題或者不同方面進行了初步了解時,我相信這些教程對你可能幫助更大。
本文中我將分四個主題進行整理: 機器學習,自然語言處理,Python和數學。在每個主題中我將包含一個例子和多個資源。當然我不可能完全覆蓋所有的主題啦。
如果你發現我在這裡遺漏了好的教程資源,請聯繫告訴我。為了避免資源重複羅列,我在每個主題下只列出了5、6個教程。下面的每個連結都應該連結了和其他連結不同的資源,也會通過不同的方式(例如幻燈片代碼段)或者不同的角度呈現出這些內容。
作者Robbie Allen是以為科技作者和創業者、並自學AI並成為博士生。曾整理許多廣為流傳的機器學習相關資源。
1. 2017版教程資源 Over 150 ofthe Best Machine Learning, NLP, and Python Tutorials I』ve Found(150多個最好的與機器學習,自然語言處理和Python相關的教程)
2. My Curated List of AI and Machine LearningResources from Around the Web( 終極收藏AI領域你不能不關注的大牛、機構、課程、會議、圖書)
3. Cheat Sheet of Machine Learningand Python (and Math) Cheat Sheets(值得收藏的27 個機器學習的小抄)
目錄
Comprehensive list ofactivation functions in neural networks with pros/cons(stats.stackexchange.com)
https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
Linear classification: SupportVector Machine, Softmax (Stanford 231n)
http://cs231n.github.io/linear-classify/
Can you give a visualexplanation for the back propagation algorithm for neural networks? (github.com/rasbt)
https://github.com/rasbt/python-machine-learning-book/blob/master/faq/visual-backpropagation.md
What’s the Difference BetweenArtificial Intelligence, Machine Learning, and Deep Learning? (nvidia.com)
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
Deep Learning, NLP, andRepresentations (colah.github.io)
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
Embed, encode, attend, predict:The new deep learning formula for state-of-the-art NLPmodels (explosion.ai)
https://explosion.ai/blog/deep-learning-formula-nlp
Part I :http://sebastianruder.com/word-embeddings-1/index.html
Part II: http://sebastianruder.com/word-embeddings-softmax/index.html
Part III: http://sebastianruder.com/secret-word2vec/index.html
Word2Vec Tutorial—TheSkip-Gram Model, Negative Sampling (mccormickml.com)
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
Machine Learning is Fun Part 5:Language Translation with Deep Learning and the Magic ofSequences (medium.com/@ageitgey)
https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa
How to use an Encoder-DecoderLSTM to Echo Sequences of Random Integers(machinelearningmastery.com)
http://machinelearningmastery.com/how-to-use-an-encoder-decoder-lstm-to-echo-sequences-of-random-integers/
Machine Learning CrashCourse (google.com)
https://developers.google.com/machine-learning/crash-course/
Awesome MachineLearning (github.com/josephmisiti)
https://github.com/josephmisiti/awesome-machine-learning#python
An example machine learningnotebook (nbviewer.jupyter.org)
http://nbviewer.jupyter.org/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb
How To Understand Derivatives:The Quotient Rule, Exponents, and Logarithms (betterexplained.com)
https://betterexplained.com/articles/how-to-understand-derivatives-the-quotient-rule-exponents-and-logarithms/
How To Understand Derivatives:The Product, Power & Chain Rules(betterexplained.com)
https://betterexplained.com/articles/derivatives-product-power-chain/
編輯 / 肖紫寒 審核 / 盛兆陽 肖紫寒
指導:萬劍華教授(微信號wjh18266613129)