每屆CASP會持續好幾個月。比賽中會定期給出目標蛋白質或蛋白質結構域——總共100個左右,讓團隊有幾周的時間來提交他們預測的結構。隨後,一支由獨立科學家組成的團隊利用各類指標對預測結果進行評估,這些指標主要判斷團隊預測的蛋白質與實驗解析的結構有多相似。評審專家並不知道預測是誰做的。
AlphaFold的預測用被稱為「427組」,多個預測達到了驚人的準確性,讓它們脫穎而出,Lupas說。「我猜到了是AlphaFold,大部分人都猜到了。」他說。
AlphaFold的預測水平有高有低,但將近三分之二的預測結果都與實驗結果在質量上不相上下。有些情況下,Moult說,我們甚至不知道AlphaFold的預測和實驗結果之間的差異究竟是預測上的錯誤還是實驗中的偽跡。
AlphaFold的預測結果與利用核磁共振光譜技術解析的實驗結構匹配度較差,但這可能和原始數據轉為模型的方式有關,Moult說。AlphaFold在模擬蛋白複合物/群組的單體結構方面也顯困難,因為它們與其他蛋白質的相互作用會扭曲其形狀。
整體來說,今年參賽團隊的預測結果較上一屆更加準確,但主要進步還是來自AlphaFold,Moult說。預測準確度以100分為滿分,在難度中等的目標蛋白質中,其他團隊的最好成績一般是75分,而AlphaFold能拿到90分左右,Moult說。
約半數團隊在摘要裡概括他們的方法時都提到了「深度學習」,Moult說,說明了AI對該領域的影響力不容小覷。參加CASP14的大部分團隊都有學術背景,但也有微軟和騰訊這樣的團隊。
紐約哥倫比亞大學的計算生物學家Mohammed AlQuraishi也參加了CASP,他迫切想要了解AlphaFold在比賽中的表現細節,他準備在12月1日DeepMind團隊演示他們的方法時,好好研究一下這個系統的工作方式。他說,雖然可能性不大,但也有可能是因為這次的目標蛋白質比平時簡單,才讓他們取得了如此好的成績。強烈的直覺告訴AlQuraishi,AlphaFold將是顛覆性的。
「我想可以這麼說,蛋白質結構預測領域將迎來一場顛覆。我懷疑許多人都會離開,因為該領域的核心問題已經解決了。」他說,「這是最高級別的突破,它絕對是我一生中看到的最重要的科學成果之一。」