高解析度碎片質譜可對未知代謝物進行系統分類
作者:
小柯機器人發布時間:2020/11/25 16:19:35
德國耶拿弗裡德裡希-席勒大學Sebastian Bcker研究團隊的一項最新研究,提出利用高解析度碎片質譜對未知代謝物進行系統分類。該項研究成果發表在2020年11月23日出版的《自然-生物技術》上。
在本研究中,研究人員研發了CANOPUS(使用質譜的類分配和本體預測),這是一種用於系統複合物注釋的計算工具。CANOPUS利用深層神經網絡從碎片譜中預測了2497種化合物類別,包括所有與生物學相關類別。CANOPUS可特異性識別無法獲得光譜或結構參考數據的化合物,並預測缺乏串聯質譜數據的類別。在使用參考數據進行評估的過程中,CANOPUS實現了高效的預測性能(交叉驗證的平均準確度為99.7%),並且優於四種基線方法。
研究人員通過研究小鼠消化系統中微生物定植的作用、分析不同大戟屬植物的化學多樣性、海洋天然產物的發掘和揭示對化合物類別的生物學見解,證明了CANOPUS的廣泛用途。
據悉,使用非靶向串聯質譜代謝組學可檢測生物樣品中數千個分子。但是,結構分子注釋局限於樣品庫或資料庫中存在的結構,這限制了對實驗數據的分析和解釋。
附:英文原文
Title: Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra
Author: Kai Dhrkop, Louis-Flix Nothias, Markus Fleischauer, Raphael Reher, Marcus Ludwig, Martin A. Hoffmann, Daniel Petras, William H. Gerwick, Juho Rousu, Pieter C. Dorrestein, Sebastian Bcker
Issue&Volume: 2020-11-23
Abstract: Metabolomics using nontargeted tandem mass spectrometry can detect thousands of molecules in a biological sample. However, structural molecule annotation is limited to structures present in libraries or databases, restricting analysis and interpretation of experimental data. Here we describe CANOPUS (class assignment and ontology prediction using mass spectrometry), a computational tool for systematic compound class annotation. CANOPUS uses a deep neural network to predict 2,497compound classes from fragmentation spectra, including all biologically relevant classes. CANOPUS explicitly targets compounds for which neither spectral nor structural reference data are available and predicts classes lacking tandem mass spectrometry training data. In evaluation using reference data, CANOPUS reached very high prediction performance (average accuracy of 99.7% in cross-validation) and outperformed four baseline methods. We demonstrate the broad utility of CANOPUS by investigating the effect of microbial colonization in the mouse digestive system, through analysis of the chemodiversity of different Euphorbia plants and regarding the discovery of a marine natural product, revealing biological insights at the compound class level.
DOI: 10.1038/s41587-020-0740-8
Source: https://www.nature.com/articles/s41587-020-0740-8