從決策樹到隨機森林:樹型算法的原理與實現

2020-12-13 機器之心Pro

本文由機器之心編輯,「機器之心」專注生產人工智慧專業性內容,適合開發者和從業者閱讀參考。點擊右上角即刻關注。

基於樹(Tree based)的學習算法在數據科學競賽中是相當常見的。這些算法給預測模型賦予了準確性、穩定性以及易解釋性。和線性模型不同,它們對非線性關係也能進行很好的映射。常見的基於樹的模型有:決策樹(decision trees)、隨機森林(random forest)和提升樹(boosted trees)。

在本篇文章中,我們將會介紹決策樹的數學細節(以及各種 Python 示例)及其優缺點。你們將會發現它們很簡單,並且這些內容有助於理解。然而,與最好的監督學習方法相比,它們通常是沒有競爭力的。為了克服決策樹的各種缺點,我們將會聚焦於各種概念(附有 Python 實例),比如自助聚集或袋裝(Bootstrap Aggregating or Bagging),還有隨機森林(Random Forests)。另一種廣泛使用的提升方法會在以後進行單獨討論。每種方法都包括生成多種樹,這些樹被聯合起來,生成一個單一的一致性預測結果,並且經常帶來預測精度的顯著提升。

決策樹

決策樹是一種監督學習算法。它適用於類別和連續輸入(特徵)和輸出(預測)變量。基於樹的方法把特徵空間劃分成一系列矩形,然後給每一個矩形安置一個簡單的模型(像一個常數)。從概念上來講,它們是簡單且有效的。首先我們通過一個例子來理解決策樹。然後用一種正規分析方法來分析創建決策樹的過程。考慮一個簡單的借貸公司顧客的數據集合。我們給定了所有客戶的查詢帳戶餘額、信用記錄、任職年限和先前貸款狀況。相關任務是預測顧客的風險等級是否可信。該問題可以使用下列決策樹來解決:

分類和回歸樹(簡稱 CART)是 Leo Breiman 引入的術語,指用來解決分類或回歸預測建模問題的決策樹算法。它常使用 scikit 生成並實現決策樹: sklearn.tree.DecisionTreeClassifier 和 sklearn.tree.DecisionTreeRegressor 分別構建分類和回歸樹。

CART 模型

CART 模型包括選擇輸入變量和那些變量上的分割點,直到創建出適當的樹。使用貪婪算法(greedy algorithm)選擇使用哪個輸入變量和分割點,以使成本函數(cost function)最小化。

樹建造的結尾使用了一個預定義的停止準則,比如分配到樹上每一個葉結點的訓練樣本達到最小數量。

其他決策樹算法:

ID3:Iterative Dichotomiser 3

C4.5:ID3 算法的改進

CHAID:Chi-squared Automatic Interaction Detector

MARS:決策樹的擴展式,以更好地解決數值型預測。

條件推斷樹

回歸樹

我們現在關注一下回歸樹的 CART 算法的細節。簡要來說,創建一個決策樹包含兩步:

1. 把預測器空間,即一系列可能值 X_1,X_2,...,X_p 分成 J 個不同的且非重疊的區域 R_1,R_2,...,R_J。

2. 對進入區域 R_J 的每一個樣本觀測值都進行相同的預測,該預測就是 R_J 中訓練樣本預測值的均值。

為了創建 J 個區域 R_1,R_2,...,R_J,預測器區域被分為高維度的矩形或盒形。其目的在於通過下列式子找到能夠使 RSS 最小化的盒形區域 R_1,R_2,...,R_J,

其中,yhat_Rj 即是第 j 個盒形中訓練觀測的平均預測值。

鑑於這種空間分割在計算上是不可行的,因此我們常使用貪婪方法(greedy approach)來劃分區域,叫做遞歸二元分割(recursive binary splitting)。

它是貪婪的(greedy),這是因為在創建樹過程中的每一步驟,最佳分割都會在每個特定步驟選定,而不是對未來進行預測,並選取一個將會在未來步驟中出現且有助於創建更好的樹的分隔。注意所有的劃分區域 R_j 都是矩形。為了進行遞歸二元分割,首先選取預測器 X_j 和切割點 s

其中 yhat_R1 為區域 R_1(j,s) 中觀察樣本的平均預測值,yhat_R2 為區域 R_2(j,s) 的觀察樣本預測均值。這一過程不斷重複以搜尋最好的預測器和切分點,並進一步分隔數據以使每一個子區域內的 RSS 最小化。然而,我們不會分割整個預測器空間,我們只會分割一個或兩個前面已經認定的區域。這一過程會一直持續,直到達到停止準則,例如我們可以設定停止準則為每一個區域最多包含 m 個觀察樣本。一旦我們創建了區域 R_1、R_2、...、R_J,給定一個測試樣本,我們就可以用該區域所有訓練樣本的平均預測值來預測該測試樣本的值。

分類樹

分類樹和回歸樹十分相似,只不過它是定性地預測響應值而非定量預測。從上文可知,回歸樹對一個觀察值所預測的連續型數值就是屬於同一葉結點訓練樣本觀察值的均值。但是對於分類樹來說,我們所預測的類別是訓練樣本觀察值在某區域下最常見的類別,即訓練觀察值的模式響應(mode response)。為了達到分類目的,很多時候系統並不會只預測一個類別,它常常預測一組類別及其出現的概率。

分類樹的生成和回歸樹的生成十分相似。正如在回歸樹中那樣,我們一般使用遞歸性的二元分割來生成分類樹。然而在分類樹中,RSS 不能作為二元分割的標準。我們需要定義葉結點的不純度量 Q_m 來替代 RSS,即一種可以在子集區域 R_1,R_2,...,R_j 度量目標變量同質性的方法。在結點 m 中,我們可以通過 N_m 個樣本觀察值表示一個區域 R_m 所出現類別的頻率,第 k 個類別在第 m 個區域下訓練所出現的頻率可表示為:

其中,I(y_i=k) 為指示函數,即如果 y_i = k,則取 1,否則取零。

不純性度量 Q_m 一個比較自然的方法是分類誤差率。分類誤差率描述的是訓練觀察值在某個區域內不屬於最常見類別的概率:

考慮到該函數不可微,因此它不能實現數值優化。此外,該函數在結點概率改變上並不敏感,因此這種分類誤差率對於生成樹十分低效。我們一般使用 Gini 指數和交叉熵函數來衡量結點的誤差度量。

Gini 指數可以衡量 k 個類別的總方差,它一般定義為:

較小的 Gini 指數值表示結點包含了某個類別大多數樣本觀察值。

在資訊理論裡面,交叉熵函數用來衡量系統的混亂度。對於二元系統來說,如果系統包含了一個類別的所有內容,那麼它的值為零,而如果兩個類別的數量一樣多,那麼交叉熵達到最大為 1。因此,和 Gini 指數一樣,交叉熵函數同樣能用於度量結點的不純度:

和 G 一樣,較小的 S 值表示區域內結點包含了單個類別中的大多數觀察值。

決策樹常見參數和概念

如果我們希望以數學的方式理解決策樹,我們首先需要了解決策樹和樹型學習算法的一般概念。理解以下的術語同樣能幫助我們調整模型。

根結點:表示所有數據樣本並可以進一步劃分為兩個或多個子結點的父結點。

分裂(Splitting):將一個結點劃分為兩個或多個子結點的過程。

決策結點:當一個子結點可進一步分裂為多個子結點,那麼該結點就稱之為決策結點。

葉/終止結點:不會往下進一步分裂的結點,在分類樹中代表類別。

分枝/子樹:整棵決策樹的一部分。

父結點和子結點:如果一個結點往下分裂,該結點稱之為父結點而父結點所分裂出來的結點稱之為子結點。

結點分裂的最小樣本數:在結點分裂中所要求的最小樣本數量(或觀察值數量)。這種方法通常可以用來防止過擬合,較大的最小樣本數可以防止模型對特定的樣本學習過於具體的關係,該超參數應該需要使用驗證集來調整。

葉結點最小樣本數:葉結點所要求的最小樣本數。和結點分裂的最小樣本數一樣,該超參數同樣也可以用來控制過擬合。對於不平衡類別問題來說,我們應該取較小的值,因為屬於較少類別的樣本可能數量上非常少。

樹的最大深度(垂直深度):該超參數同樣可以用來控制過擬合問題,較小的深度可以防止模型對特定的樣本學習過於具體的關係,該超參數同樣需要在驗證集中調整。

葉結點的最大數量:葉結點的最大個數可以替代數的最大深度這一設定。因為生成一棵深度為 n 的二叉樹,它所能產生的最大葉結點個數為 2^n。

分裂所需要考慮的最大特徵數:即當我們搜索更好分離方案時所需要考慮的特徵數量,我們常用的方法是取可用特徵總數的平方根為最大特徵數。

分類樹的實現

為了展示不同的前文所述的決策樹模型,我們將使用 Kaggle 上的美國收入數據集,我們都可以在 Kaggle.com 上下載該數據集。下面的代碼可以展示該數據集的導入過程和部分內容:

import pandas as pdimport numpy as npfrom plotnine import *import matplotlib.pyplot as pltfrom sklearn.preprocessing import LabelEncoderfrom sklearn_pandas import DataFrameMapperfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.ensemble import RandomForestClassifier training_data = './adult-training.csv'test_data = './adult-test.csv'columns = ['Age','Workclass','fnlgwt','Education','EdNum','MaritalStatus','Occupation','Relationship','Race','Sex','CapitalGain','CapitalLoss','HoursPerWeek','Country','Income'] df_train_set = pd.read_csv(training_data, names=columns) df_test_set = pd.read_csv(test_data, names=columns, skiprows=1) df_train_set.drop('fnlgwt', axis=1, inplace=True) df_test_set.drop('fnlgwt', axis=1, inplace=True)

在上面的代碼中,我們首先需要導入所有需要的庫和模塊,然後再讀取數據和結構到訓練數據和驗證數據中。我們同樣去除 fnlgwt 列,因為該數據行對於模型的訓練並不重要。

輸入以下語句可以看到訓練數據的前五行:

df_train_set.head()

如下所示,我們還需要做一些數據清洗。我們需要將所有列的的特殊字符移除,此外任何空格或者「.」都需要移除。

#replace the special character to "Unknown"for i in df_train_set.columns: df_train_set[i].replace(' ?', 'Unknown', inplace=True) df_test_set[i].replace(' ?', 'Unknown', inplace=True)for col in df_train_set.columns:if df_train_set[col].dtype != 'int64': df_train_set[col] = df_train_set[col].apply(lambda val: val.replace(" ", "")) df_train_set[col] = df_train_set[col].apply(lambda val: val.replace(".", "")) df_test_set[col] = df_test_set[col].apply(lambda val: val.replace(" ", "")) df_test_set[col] = df_test_set[col].apply(lambda val: val.replace(".", ""))

正如上圖所示,有兩行描述了個人的教育:Eduction 和 EdNum。我們假設這兩個特徵十分相關,因此我們可以移除 Education 列。Country 列對預測收入並不會起到什麼作用,所以我們需要移除它。

df_train_set.drop(["Country", "Education"], axis=1, inplace=True) df_test_set.drop(["Country", "Education"], axis=1, inplace=True)

Age 和 EdNum 列是數值型的,我們可以將連續數值型轉化為更高效的方式,例如將年齡換為 10 年的整數倍,教育年限換為 5 年的整數倍,實現的代碼如下:

colnames = list(df_train_set.columns) colnames.remove('Age') colnames.remove('EdNum') colnames = ['AgeGroup', 'Education'] + colnames labels = ["{0}-{1}".format(i, i + 9) for i in range(0, 100, 10)] df_train_set['AgeGroup'] = pd.cut(df_train_set.Age, range(0, 101, 10), right=False, labels=labels) df_test_set['AgeGroup'] = pd.cut(df_test_set.Age, range(0, 101, 10), right=False, labels=labels) labels = ["{0}-{1}".format(i, i + 4) for i in range(0, 20, 5)] df_train_set['Education'] = pd.cut(df_train_set.EdNum, range(0, 21, 5), right=False, labels=labels) df_test_set['Education'] = pd.cut(df_test_set.EdNum, range(0, 21, 5), right=False, labels=labels) df_train_set = df_train_set[colnames] df_test_set = df_test_set[colnames]

現在我們已經清理了數據,下面語句可以展示我們數據的概況:

df_train_set.Income.value_counts()

<=50K 24720>50K 7841Name: Income, dtype: int64df_test_set.Income.value_counts()<=50K 12435>50K 3846Name: Income, dtype: int64

在訓練集和測試集中,我們發現 <=50K 的類別要比>50K 的多 3 倍。從這裡我們就可以看出來樣本數據並不是均衡的數據,但是在這裡為了簡化問題,我們在這裡將該數據集看作常規問題。

EDA

現在,讓我們以圖像的形式看一下訓練數據中的不同特徵的分布和相互依存(inter-dependence)關係。首先看一下關係(Relationships)和婚姻狀況(MaritalStatus)特徵是如何相互關聯的。

(ggplot(df_train_set, aes(x = "Relationship", fill = "MaritalStatus"))+ geom_bar(position="fill")+ theme(axis_text_x = element_text(angle = 60, hjust = 1)))

讓我們首先看一下不同年齡組中,教育對收入的影響(用受教育的年數進行衡量)。

(ggplot(df_train_set, aes(x = "Education", fill = "Income"))+ geom_bar(position="fill")+ theme(axis_text_x = element_text(angle = 60, hjust = 1))+ facet_wrap('~AgeGroup'))

最近,有很多關於性別對收入差距的影響的相關說法。我們可以分別看見男性和女性的教育程度和種族間的影響。

(ggplot(df_train_set, aes(x = "Education", fill = "Income"))+ geom_bar(position="fill")+ theme(axis_text_x = element_text(angle = -90, hjust = 1))+ facet_wrap('~Sex'))

(ggplot(df_train_set, aes(x = "Race", fill = "Income"))+ geom_bar(position="fill")+ theme(axis_text_x = element_text(angle = -90, hjust = 1))+ facet_wrap('~Sex'))

直到現在,我們僅關注了非數值特徵(non-numeric)的相互關係。現在我們看一下資本收益(CapitalGain)和資本損失(CapitalLoss)對收入的影響。

(ggplot(df_train_set, aes(x="Income", y="CapitalGain"))+ geom_jitter(position=position_jitter(0.1)))

(ggplot(df_train_set, aes(x="Income", y="CapitalLoss"))+ geom_jitter(position=position_jitter(0.1)))

樹分類器

現在我們理解了我們數據中的一些關係,所以就可以使用 sklearn.tree.DecisionTreeClassifier 創建一個簡單的樹分類器模型。然而,為了使用這一模型,我們需要把所有我們的非數值數據轉化成數值型數據。我們可以直接在 Pandas 數據框架中使用 sklearn.preprocessing.LabeEncoder 模塊和 sklearn_pandas 模塊就可以輕鬆地完成這一步驟。

mapper = DataFrameMapper([('AgeGroup', LabelEncoder()),('Education', LabelEncoder()),('Workclass', LabelEncoder()),('MaritalStatus', LabelEncoder()),('Occupation', LabelEncoder()),('Relationship', LabelEncoder()),('Race', LabelEncoder()),('Sex', LabelEncoder()),('Income', LabelEncoder())], df_out=True, default=None) cols = list(df_train_set.columns) cols.remove("Income") cols = cols[:-3] + ["Income"] + cols[-3:] df_train = mapper.fit_transform(df_train_set.copy()) df_train.columns = cols df_test = mapper.transform(df_test_set.copy()) df_test.columns = cols cols.remove("Income") x_train, y_train = df_train[cols].values, df_train["Income"].values x_test, y_test = df_test[cols].values, df_test["Income"].values

現在我們用正確的形式對數據進行了訓練和測試,已創建了我們的第一個模型!

treeClassifier = DecisionTreeClassifier() treeClassifier.fit(x_train, y_train) treeClassifier.score(x_test, y_test)

最簡單的且沒有優化的概率分類器模型可以達到 83.5% 的精度。在分類問題中,混淆矩陣(confusion matrix)是衡量模型精度的好方法。使用下列代碼我們可以繪製任意基於樹的模型的混淆矩陣。

import itertoolsfrom sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes, normalize=False):""" This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ cmap = plt.cm.Blues title = "Confusion Matrix"if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm = np.around(cm, decimals=3) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')

現在,我們可以看到第一個模型的混淆矩陣:

y_pred = treeClassifier.predict(x_test) cfm = confusion_matrix(y_test, y_pred, labels=[0, 1]) plt.figure(figsize=(10,6)) plot_confusion_matrix(cfm, classes=["<=50K", ">50K"], normalize=True)

我們發現多數類別(<=50K)的精度為 90.5%,少數類別(>50K)的精度只有 60.8%。

讓我們看一下調校此簡單分類器的方法。我們能使用帶有 5 折交叉驗證的 GridSearchCV() 來調校樹分類器的各種重要參數。

from sklearn.model_selection import GridSearchCV

parameters = {'max_features':(None, 9, 6),'max_depth':(None, 24, 16),'min_samples_split': (2, 4, 8),'min_samples_leaf': (16, 4, 12)}clf = GridSearchCV(treeClassifier, parameters, cv=5, n_jobs=4)clf.fit(x_train, y_train)clf.best_score_, clf.score(x_test, y_test), clf.best_params_(0.85934092933263717, 0.85897672133161351, {'max_depth': 16, 'max_features': 9, 'min_samples_leaf': 16, 'min_samples_split': 8})

經過優化,我們發現精度上升到了 85.9%。在上方,我們也可以看見最優模型的參數。現在,讓我們看一下 已優化模型的混淆矩陣(confusion matrix):

y_pred = clf.predict(x_test) cfm = confusion_matrix(y_test, y_pred, labels=[0, 1]) plt.figure(figsize=(10,6)) plot_confusion_matrix(cfm, classes=["<=50K", ">50K"], normalize=True)

經過優化,我們發現在兩種類別下,預測精度都有所提升。

決策樹的局限性

決策樹有很多優點,比如:

易於理解、易於解釋

可視化

無需大量數據準備。不過要注意,sklearn.tree 模塊不支持缺失值。

使用決策樹(預測數據)的成本是訓練決策時所用數據的對數量級。

但這些模型往往不直接使用,決策樹一些常見的缺陷是:

構建的樹過於複雜,無法很好地在數據上實現泛化。

數據的微小變動可能導致生成的樹完全不同,因此決策樹不夠穩定。

決策樹學習算法在實踐中通常基於啟發式算法,如貪婪算法,在每一個結點作出局部最優決策。此類算法無法確保返回全局最優決策樹。

如果某些類別佔據主導地位,則決策樹學習器構建的決策樹會有偏差。因此推薦做法是在數據集與決策樹擬合之前先使數據集保持均衡。

某些類別的函數很難使用決策樹模型來建模,如 XOR、奇偶校驗函數(parity)和數據選擇器函數(multiplexer)。

大部分限制可以通過改善決策樹輕易解決。在下面的內容中,我們將介紹相關的幾個概念,重點介紹袋裝和隨機森林。

剪枝

由於決策樹容易對數據產生過擬合,因此分支更少(即減少區域 R_1, … ,R_J)的小樹雖然偏差略微高一點,但其產生的方差更低,可解釋性更強。處理上述問題的一種方法是構建一棵樹,每個分支超過某個(高)閾值造成葉結點誤差率 Qm 下降,則結束構建。但是,由於分裂算法的貪婪本質,它其實很短視。決策樹早期看似無用的一次分裂有可能會導致之後一次優秀的分裂,並使得 Qm 大幅下降。

因此,更好的策略是構建一個非常大的樹 T_0,然後再剪枝,得到一棵子樹。剪枝可以使用多種策略。代價複雜度剪枝(Cost complexity pruning),又叫最弱連接剪枝(weakest link pruning),就是其中一種行之有效的策略。除了考慮每一個可能的子樹之外,還需要考慮由非負調參(nonnegative tuning parameter)α 索引的樹序列。每一個 α 值都對應一個儘可能小的子樹 TT_0。

這裡∣T∣代表樹 T 中葉結點的數量,R_m 代表第 m 個葉結點對應的矩形(預測器空間的子集),yhat_Rm 是 Rm 的預測值,即 Rm 中訓練樣本預測值的均值(或分類樹中的模式響應)。調整參數 α 控制子樹複雜度之間的權衡,對訓練數據進行擬合。當 α= 0 的時候,子樹 T 等同於 T_0。當α的值增長時,構建具備多個子結點的樹需要付出代價,這樣,要想得到更小的子樹,上述公式將達到最小化。我們可以使用某種交叉驗證方法選擇剪枝參數 α 。

注意,目前 sklearn.tree 決策樹分類器(和回歸器)不支持剪枝。

袋裝(Bootstrap Aggregating——Bagging)

在統計學中,Bootstrap 是依靠替換隨機採樣的任意試驗或度量。我們從上文可以看見,決策樹會受到高方差的困擾。這意味著如果我們把訓練數據隨機分成兩部分,並且給二者都安置一個決策樹,我們得到的結果可能就會相當不同。Bootstrap 聚集,或者叫做袋裝,是減少統計學習方法的方差的通用過程。

給定一組 n 個獨立的樣本觀測值 Z_1,Z_2,...,Z_n,每一個值的方差均為 *σ^*2,樣本觀測值的均值方差為 *σ^*2/*n*。換句話說,對一組觀測值取平均會減小方差。因此一種減小方差的自然方式,也就是增加統計學習方法預測精度的方式,就是從總體中取出很多訓練集,使用每一個訓練集創建一個分離的預測模型,並且對預測結果求取平均值。

這裡有一個問題,即我們不能獲取多個訓練數據集。相反,我們可以通過從(單一)訓練數據集提取重複樣本進行自助法(bootstrap)操作。在這種方法中,我們生成了 B 個不同的自助訓練數據集。我們隨後在第 b 個自助訓練數據集得到了一個預測結果

,從而獲得一個聚集預測(aggregate prediction)。

這就叫做袋裝(bagging)。注意,聚集(aggregating)在回歸和分類問題中可能有不同的均值。當平均預測值在回歸問題中的效果很好時,我們將會需要使用多數票決(majority vote):由於分類問題中的聚集機制,整體預測就是在 B 個預測值中最常出現的那個主要類別。

Out-of-Bag(OOB)誤差

Bagging 方法最大的優勢是我們可以不通過交叉驗證而求得測試誤差。回想一下,Bagging 方法的精髓是多棵樹可以重複地擬合觀察樣本的自助子集。平均而言,每一個袋裝樹可以利用 2/3 的觀察樣本。而剩下的 1/3 觀察樣本就可以稱為 out-of-bag (OOB) 觀察樣本,它們並不會擬合一一棵給定袋裝樹。我們可以使用每一棵樹的 OOB 觀察樣本而計算第 i 個觀察樣本的預測值,這將會導致大約有 B/3 的預測值可以預測第 i 個觀察樣本。現在我們可以使用和 Bagging(平均回歸和大多數投票分類)類似的聚集技術,我們能獲得第 i 個觀察樣本的單一預測值。我們可以用這種方式獲得 n 個觀察樣本的 OOB 預測,因此總體的 OOB MSE(回歸問題)和分類誤差率(分類問題)就能計算出來。OOB 誤差結果是 Bagging 模型測試誤差的有效估計,因為每一個樣本的預測值都是僅僅使用不會進行擬合訓練模型的樣本。

特徵重要性度量

通過使用單一樹,Bagging 通常會提升預測的精確度。但是,解釋最終的模型可能很困難。當我們袋裝大量的樹時,就不再可能使用單一的樹表徵最終的統計學習流程,因此,Bagging 是以犧牲闡釋性能力為代價來提升預測精確度的。有趣的是,一個人可使用 RSS(用於 bagging 回歸樹)或者基尼指數(用於 bagging 分類樹)得到每一個預測器的整體總結。在 bagging 回歸樹的情況中,我們可以記錄由於所有的 B 樹上平均的給定預測分子分裂而造成的 RSS 減少的所有數量。一個大的值表示一個重要的預測器。相似地,在 bagging 分類樹的情況下,我們可以添加由於所有的 B 樹上平均的給定預測分子分裂而造成的基尼係數降低的所有數量。一旦訓練完成,sklearn 模塊的不同袋裝樹(bagged tree)學習方法可直接訪問特徵的重要性數據作為屬性。

隨機森林模型

雖然袋裝技術(Bagging)通過降低方差而提高了一般決策樹的預測性能,但它還遇到了其他缺點:Bagging 要求我們在自助樣本上生成整棵樹,這就增加了 B 倍計算複雜度。此外,因為基於 Bagging 的樹是相關聯的,預測精度會根據 B 而飽和。

隨機森林通過隨機擾動而令所有的樹去相關,因此隨機森林要比 Bagging 性能更好。隨機森林不像 Bagging,在構建每一棵樹時,每一個結點分割前都是採用隨機樣本預測器。因為在核心思想上,隨機森林還是和 Bagging 樹一樣,因此其在方差上有所減少。此外,隨機森林可以考慮使用大量預測器,不僅因為這種方法減少了偏差,同時局部特徵預測器在樹型結構中充當重要的決策。

隨機森林可以使用巨量的預測器,甚至預測器的數量比觀察樣本的數量還多。採用隨機森林方法最顯著的優勢是它能獲得更多的信息以減少擬合數值和估計分割的偏差。

通常我們會有一些預測器能主導決策樹的擬合過程,因為它們的平均性能始終要比其他一些競爭預測器更好。因此,其它許多對局部數據特徵有用的預測器並不會選定作為分割變量。隨著隨機森林計算了足夠多的決策樹模型,每一個預測器都至少有幾次機會能成為定義分割的預測器。大多數情況下,我們不僅僅只有主導預測器,特徵預測器也有機會定義數據集的分割。

隨機森林有三個主要的超參數調整:

結點規模:隨機森林不像決策樹,每一棵樹葉結點所包含的觀察樣本數量可能十分少。該超參數的目標是生成樹的時候儘可能保持小偏差。

樹的數量:在實踐中選擇數百棵樹一般是比較好的選擇。

預測器採樣的數量:一般來說,如果我們一共有 D 個預測器,那麼我們可以在回歸任務中使用 D/3 個預測器數作為採樣數,在分類任務中使用 D^(1/2) 個預測器作為抽樣。

隨機森林模型案例

使用和上文一樣的收入數據,現在我們構建一個包含 500 棵樹的簡單隨機森林分類器模型:

rclf = RandomForestClassifier(n_estimators=500) rclf.fit(x_train, y_train) rclf.score(x_test, y_test)

即使沒有任何優化,我們仍然發現模型性能可以和已優化決策樹分類器相媲美,並且測試分達到了 85.1%。按照下面的混淆矩陣,我們發現簡單的隨機森林和經過優化的樹型分類器表現差不多,其在主要類別(<=50K 收入)的預測精度達到了 92.1%,而在少數類別(>50K 收入)上達到了 62.6%。

rclf = RandomForestClassifier(n_estimators=500) rclf.fit(x_train, y_train) rclf.score(x_test, y_test)

正如前面所探討的,隨機森林模型還提供了特徵重要性的度量方法。我們可以在下圖中看到目前模型不同特徵的重要性:

importances = rclf.feature_importances_ indices = np.argsort(importances) cols = [cols[x] for x in indices] plt.figure(figsize=(10,6)) plt.title('Feature Importances') plt.barh(range(len(indices)), importances[indices], color='b', align='center') plt.yticks(range(len(indices)), cols) plt.xlabel('Relative Importance')

現在我們可以嘗試優化我們的隨機森林模型,如下我們可以使用帶 5-折交叉驗證的 GridSearchCV() 操作來優化隨機森林:

parameters = {'n_estimators':(100, 500, 1000),'max_depth':(None, 24, 16),'min_samples_split': (2, 4, 8),'min_samples_leaf': (16, 4, 12)} clf = GridSearchCV(RandomForestClassifier(), parameters, cv=5, n_jobs=8) clf.fit(x_train, y_train) clf.best_score_, clf.best_params_ 0.86606676699118579 {'max_depth': 24, 'min_samples_leaf': 4, 'min_samples_split': 4, 'n_estimators': 1000}

0.86606676699118579{'max_depth': 24, 'min_samples_leaf': 4, 'min_samples_split': 4, 'n_estimators': 1000}

我們可以看到現在的模型要顯著地比前面的更好一些,並且預測率達到了 86.6%。按照下面的混淆矩陣,新模型在主要類別的預測精度上有顯著的提升,並且在少數類別的預測上精度只稍微降低了一點。這是非平衡數據普遍存在的問題。

rclf2 = RandomForestClassifier(n_estimators=1000,max_depth=24,min_samples_leaf=4,min_samples_split=8) rclf2.fit(x_train, y_train) y_pred = rclf2.predict(x_test) cfm = confusion_matrix(y_test, y_pred, labels=[0, 1]) plt.figure(figsize=(10,6)) plot_confusion_matrix(cfm, classes=["<=50K", ">50K"], normalize=True)

最後,下面展示了對優化後模型比較重要的特徵。

importances = rclf2.feature_importances_ indices = np.argsort(importances) cols = [cols[x] for x in indices] plt.figure(figsize=(10,6)) plt.title('Feature Importances') plt.barh(range(len(indices)), importances[indices], color='b', align='center') plt.yticks(range(len(indices)), cols) plt.xlabel('Relative Importance')

隨機森林的局限性

除了 Bagging 樹模型的一般局限性外,隨機森林還有一些局限性:

當我們需要推斷超出範圍的獨立變量或非獨立變量,隨機森林做得並不好,我們最好使用如 MARS 那樣的算法。

隨機森林算法在訓練和預測時都比較慢。

如果需要區分的類別十分多,隨機森林的表現並不會很好。

總的來說,隨機森林在很多任務上一般要比提升方法的精度差,並且運行時間也更長。所以在 Kaggle 競賽上,有很多模型都是使用的梯度提升樹算法或其他優秀的提升方法。

相關焦點

  • 機器學習十大經典算法之隨機森林
    隨機森林簡介隨機森林是機器學習一種常用的方法。它是以決策樹為基礎,用隨機的方式排列建立的,森林裡每個決策樹之間都是沒有關聯的。 在得到森林之後,當有一個新的輸入樣本進入的時候,就讓森林中的每一棵決策樹分別進行一下判斷,看看這個樣本應該屬於哪一類(對於分類算法),然後看看哪一類被選擇最多,就預測這個樣本為那一類。隨機森林可以用來進行無監督學習聚類和異常點檢測。決策樹(decision tree)是一個樹結構(可以是二叉樹或非二叉樹)。
  • 如何用決策樹模型做數據分析?
    他和人群中女性的佔比應該滿足這樣一條曲線的關係,當女性佔比為0或者100%的時候,進行判斷的不確定性最小;E取最小值0當女性佔比為50%的時候,判斷的不確定性最大,E取最大值1;當女性佔比取0到50%,或者50%到100%之間的值的時候,E的取值介於0到1之間。並且取值相對女性佔比50%是對稱的。
  • 詳解線性回歸、樸素貝葉斯、隨機森林在R和Python中的...
    監督式學習的例子有:回歸(Regression)、決策樹(Decision Tree)、隨機森林(Random Forest)、K最近鄰(KNN)、邏輯回歸(Logistic Regression)等等。
  • 機器學習面試中最常考的樹模型(附答案)
    2、CART回歸樹是怎麼實現的?(貝殼)3、CART分類樹和ID3以及C4.5有什麼區別(貝殼)4、剪枝有哪幾種方式(貝殼)5、樹集成模型有哪幾種實現方式?(貝殼)boosting和bagging的區別是什麼?(知乎、阿里)6、隨機森林的隨機體現在哪些方面(貝殼、阿里)7、AdaBoost是如何改變樣本權重,GBDT分類樹的基模型是?
  • 8種常見機器學習算法比較
    KNN算法的優點缺點5.決策樹易於解釋。它可以毫無壓力地處理特徵間的交互關係並且是非參數化的,因此你不必擔心異常值或者數據是否線性可分(舉個例子,決策樹能輕鬆處理好類別A在某個特徵維度x的末端,類別B在中間,然後類別A又出現在特徵維度x前端的情況)。它的缺點之一就是不支持在線學習,於是在新樣本到來後,決策樹需要全部重建。另一個缺點就是容易出現過擬合,但這也就是諸如隨機森林RF(或提升樹boosted tree)之類的集成方法的切入點。另
  • 「神經網絡」能否代替「決策樹算法」?
    但先要說明決策樹就是決策樹,隨機森林和xgboost的性能提升主要是來自於集成學習。所以,我們擴展一下題目把對比延伸到:單棵決策樹,如比較常見的C4.5等以決策樹為基模型的集成學習算法(Ensemble Tree),如隨機森林,gradient boosting,和xgboost神經網絡,包括各種深度和結構的網絡我的看法是,
  • 來複習一波,HashMap底層實現原理解析
    答案是可以滴,那就是哈希表可以滿足,接下來我們一起複習HashMap中的put()和get()方法實現原理。HashMap的put()和get()的實現1、map.put(k,v)實現原理第一步首先將k,v封裝到Node對象當中(節點)。
  • 分享最適合新手入門的10種機器學習算法
    例如,你不能認為神經網絡總比決策樹要好,或決策樹永遠優於神經網絡。這其中還有許多因素需要考慮,比如你的數據量大小和數據結構。 這樣就導致我們在面對一個問題時需要嘗試不同的算法,同時還要用測試的數據集來評估算法的性能,選出最合適的那一種。 當然,你所選的算法必須適合你的問題,就像當我們需要清理房子的時候,可以使用吸塵器、掃把或拖把,但不會用鏟子來挖地。
  • 樹模型(一)——樹的構造
    在分類樹中,即主要針對目標變量是離散變量(一般為二元變量)的情形,樹模型的普遍使用是源於其構造方法成熟且相對簡單,易於從概念上理解。一棵樹的構建可以簡單理解為多個判斷規則的多路徑分類,根據單個樣本分到其中一類。
  • 算法有沒有價值觀?知乎內容推薦算法解析
    Word2vec 的原理和使用方法這裡就不做過多介紹了,有興趣的可以閱讀文獻[1],Python 版本實現的可以參考 gensim官方文檔。  text-cnn  TextCNN 是利用卷積神經網絡對文本進行分類的算法,2014 年由 Yoon Kim 提出(見參考[3])。
  • 輕鬆看懂機器學習十大常用算法
    通過本篇文章可以對ML的常用算法有個常識性的認識,沒有代碼,沒有複雜的理論推導,就是圖解一下,知道這些算法是什麼,它們是怎麼應用的,例子主要是分類問題。每個算法都看了好幾個視頻,挑出講的最清晰明了有趣的,便於科普。 以後有時間再對單個算法做深入地解析。
  • GPU上的隨機森林:比Apache Spark快2000倍
    隨機森林是一種機器學習算法,以其魯棒性、準確性和可擴展性而受到許多數據科學家的信賴。該算法通過bootstrap聚合訓練出多棵決策樹,然後通過集成對輸出進行預測。由於其集成特徵的特點,隨機森林是一種可以在分布式計算環境中實現的算法。樹可以在集群中跨進程和機器並行訓練,結果比使用單個進程的訓練時間快得多。
  • 教程| 從頭開始:用Python實現決策樹算法
    同時,決策樹算法也為更高級的集成模型(如 bagging、隨機森林及 gradient boosting)提供了基礎。在這篇教程中,你將會從零開始,學習如何用 Python 實現《Classification And Regression Tree algorithm》中所說的內容。
  • AI研究:如何讓機器學習算法解釋自己的決策?
    因此,雖然你可以測試一個神經網絡在照片中檢測到貓的效果,但要判斷出它們的存在與否,你很難辨明它們的視覺模式。「當涉及到照片中貓的檢測時,這並不是什麼大問題,但這項技術正在悄然進入一些領域,在這些領域,能夠解釋這些決定可能很重要。」說到檢測到貓的存在,這並不是什麼大問題,但這項技術正在悄然進入一些領域,在這些領域中,能夠解釋這些決策可能很重要,比如金融交易和疾病診斷。
  • 機器學習十大算法都是何方神聖?
    大數據原本在工業界中就已經炙手可熱,而基於大數據的機器學習則更加流行,因為其通過對數據的計算,可以實現數據預測、為公司提供決策依據。跟我們生活息息相關的最常見機器學習算法包括電影推薦算法、圖書推薦算法。這些算法都是基於你的電影觀看記錄或圖書購買記錄來給你做推薦的。James Le在KDnuggets上發布了一篇文章,介紹了他是如何入門機器學習的。
  • MIT提出了用隨機數生成隨機數的計算機算法
    眾所周知,計算機無法製造出隨機性,它們也不應該:計算機軟體和硬體運行在布爾邏輯,而非概率上。 目前,我們使用的真隨機數據,一般來自系統從物理環境中採集到的「隨機噪音」。 但是計算機科學家想要可以處理隨機性的程序,因為那有時候是解決問題所必須的。
  • 決策樹模型怎麼畫?詳細圖文教程解讀模型圖畫法
    決策樹是一種解決分類問題的算法,本文將介紹什麼是決策樹模型,常見的用途,以及如何使用「億圖圖示」軟體繪製決策樹模型。決策樹的特點和常見用途雖然決策樹模型對於連續性的欄位比較難預測,但是利用決策樹模型可以生成可以理解的規則,計算量也不大,還能夠清晰的顯示哪些欄位比較重要。它能夠在相對短的時間內能夠對大型數據源做出可行且效果良好的結果,所以在現代企業管理過程中,決策樹模型得到了企業決策制定者以及分析人員的廣泛地應用。
  • 芝麻031| 沙丁魚與遺傳算法
    在讀《狼圖騰》的時候,狼群作戰也是類似的決策,保護母狼和幼崽,老弱病殘在進攻時總是不幸地成為犧牲品。沙丁魚也是如此,面對捕食者時,它們聚集成一個個直徑達數十米的「魚球」。每一個魚球都包含上萬條沙丁魚。它們動作整齊劃一,持著近乎完美的球形。這讓它們在捕食者眼中成了一個巨大的銀色生物,很難找到可以「下手」的目標。捕食者們只好依靠橫衝直撞,來找一些來不及隨群體轉向而落單的個體下口。