2021年中考數學知識點:直角三角形的性質

2020-12-12 中考網

  中考網整理了關於2021年中考數學知識點:直角三角形的性質,希望對同學們有所幫助,僅供參考。

  ①直角三角形的兩個銳角互為餘角;

  ②直角三角形斜邊上的中線等於斜邊的一半;

  ③直角三角形的兩直角邊的平方和等於斜邊的平方(勾股定理);

  ④直角三角形中30度角所對的直角邊等於斜邊的一半;

  相關推薦:

  2021年全國各省市中考報名時間匯總

  2021年全國各地中考體育考試方案匯總

  2021年全國各省市中考時間匯總

 

關注中考網微信公眾號 

每日推送中考知識點,應試技巧

助你迎接2021年中考!

   歡迎使用手機、平板等行動裝置訪問中考網,2020中考一路陪伴同行!>>點擊查看

相關焦點

  • 2021年中考數學知識點:三角形
    中考網整理了關於2021年中考數學知識點:三角形,希望對同學們有所幫助,僅供參考。   易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特徵與區別。   易錯點2:三角形三邊之間的不等關係,注意其中的「任何兩邊」。最短距離的方法。
  • 2021年中考數學知識點:等腰直角三角形面積公式
    中考網整理了關於2021年中考數學知識點:等腰直角三角形面積公式,希望對同學們有所幫助,僅供參考。   等腰直角三角形面積公式   =(1/2)*底*高   s=(1/2)*a*b*sinC(C為a,b的夾角)   底*高/2   底X高除2二分之一的(兩邊的長度X夾角的正弦)   s=1/2的周長*內切圓半徑   s=(1/2)*底*高   s=(1/2)
  • 2021年中考數學幾何知識點:正方形的定義及性質
    中考網整理了關於2021年中考數學幾何知識點:正方形的定義及性質,希望對同學們有所幫助,僅供參考。   1.定義:有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形   2.性質:   (1)正方形四個角都是直角,四條邊都相等   (2)正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角   (3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形   (4)正方形的對角線與邊的夾角是
  • 2021年中考數學幾何知識點:幾何體一般概念及性質
    中考網整理了關於2021年中考數學幾何知識點:幾何體一般概念及性質,希望對同學們有所幫助,僅供參考。   幾何體一般概念及性質:   1、圓柱:可以看做以矩形的一邊為旋轉軸、旋轉一周形成的曲面所圍成的幾何體   2、圓錐:可以看做以直角三角形的一直角邊為旋轉軸、旋轉一周形成的曲面所圍成的幾何體   3、圓臺:可以看做以直角梯形中垂直於底邊的腰所在的直線為旋轉軸、旋轉一周形成的曲面所圍成的幾何體   4、球:一個半圓繞著它的直徑所在的直線旋轉一周所形成的曲面所圍成的幾何體
  • 2021年中考數學知識點:圓的基礎性質
    中考網整理了關於2021年中考數學知識點:圓的基礎性質,希望對同學們有所幫助,僅供參考。   圓的基礎性質   ⑴垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的2條弧。   逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的2條弧。
  • 2021年初中七年級數學知識點:三角形概念
    中考網整理了關於2021年初中七年級數學知識點:三角形概念,希望對同學們有所幫助,僅供參考。   1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。   2.三角形的三邊關係:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
  • 2021年中考數學幾何知識點:幾何公式與定理梳理
    中考網整理了關於2021年中考數學幾何知識點:幾何公式與定理梳理,希望對同學們有所幫助,僅供參考。   16、推論三角形兩邊的差小於第三邊   17、三角形內角和定理三角形三個內角的和等於180°   18、推論1直角三角形的兩個銳角互餘   19、推論2三角形的一個外角等於和它不相鄰的兩個內角的和   20、推論3三角形的一個外角大於任何一個和它不相鄰的內角   21、全等三角形的對應邊
  • 2021年中考數學知識點:平面直角坐標系定義
    中考網整理了關於2021年中考數學知識點:平面直角坐標系定義,希望對同學們有所幫助,僅供參考。   平面直角坐標系定義:   在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。
  • 2021年中考數學知識點:銳角三角函數
    中考網整理了關於2021年中考數學知識點:銳角三角函數,希望對同學們有所幫助,僅供參考。   銳角三角函數的定義   銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),(餘割csc)都叫做角A的銳角三角函數。
  • 2021年中考數學幾何知識點:圖形與變換
    中考網整理了關於2021年中考數學幾何知識點:圖形與變換,希望對同學們有所幫助,僅供參考。   1、圖形的軸對稱   軸對稱:如果一個圖形沿一條直線摺疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。   軸對稱圖形:①角的平分線上的點到這個角的兩邊的距離相等。
  • 中考數學:二次函數與等腰直角三角形存在性問題,題型變幻莫測?
    答:知識點就那麼一些,難度不算大,還是幾何難一些!等腰直角三角形難不難?答:還可以吧,知識點挺少的。如果二次函數與等腰直角三角形相結合呢?答:……確實如此,在初中階段,數學的單個知識點難度都不算很大。但是一旦與幾何相結合,綜合難度讓一部分考生不得不唉聲嘆氣,直接放棄!其實,這些綜合性的題目,涉及到的知識點挺多的。
  • 2021年中考數學幾何知識點:常見立體幾何圖形及性質
    中考網整理了關於2021年中考數學幾何知識點:常見立體幾何圖形及性質,希望對同學們有所幫助,僅供參考。   常見立體幾何圖形及性質:   ①正方體:   有8個頂點,6個面。每個面面積相等(或每個面都有正方形組成)。有12條稜,每條稜長的長度都相等。
  • 2021年中考數學知識點之銳角三角函數
    中考網整理了關於2021年中考數學知識點之銳角三角函數,希望對同學們有所幫助,僅供參考。   銳角三角函數的定義   銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),(餘割csc)都叫做角A的銳角三角函數。
  • 2021年初中七年級數學定理:等腰三角形性質
    中考網整理了關於2021年初中七年級數學定理:等腰三角形性質,希望對同學們有所幫助,僅供參考。   等腰三角形的性質定理:等腰三角形的兩個底角相等(即等邊對等角)   推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊   等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合   等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) 關注中考網微信公眾號
  • 2021年中考數學知識點之垂線的性質
    中考網整理了關於2021年中考數學知識點之垂線的性質,希望對同學們有所幫助,僅供參考。   1、垂線的性質:   ⑴過一點有且只有一條直線與已知直線垂直。   ⑵連接直線外一點與直線上各點的所在線段中,垂線段最短。   2.、直線外一點到這條直線的垂線段的長度,叫做_點到直線的距離。
  • 中考數學專題複習:第18講直角三角形
    真題精選例題精講類型一 直角三角形的性質與判定【解後感悟】根據直角三角形的性質、以及斜邊上中線性質、含30°角的直角三角形性質是解此題的關鍵,解題時注意分類討論的運用.類型二 直角三角形的分類討論【解後感悟】分類討論,相似三角形的性質是解答此題的關鍵.
  • 「創作開運禮」中考數學複習專題,解直角三角形的應用
    中考數學,解直角三角形是一個重點,分值應該在30左右,而且很多大的題目解題都要用到直角三角形的相關知識,今天給大家分享解直角三角形專題希望能對大家的複習帶來幫助。知識點一、仰角、俯角問題仰角:指從下往上看,視線與水平線的夾角。俯角:指從上往下看,視線與水平線的夾角。解題方法:仰角、俯角問題一般是通過作水平的垂線,構造一個直角三角形,然後再把仰角、俯角轉化為直角三角形的內角解題。
  • 直角三角形,考的不僅是勾股定理,關鍵在於應用
    在整個初中數學知識框架當中,解直角三角形既是學習幾何的重要內容,又是今後進入高中學習解斜三角形、三角函數等知識的基礎,作為一種承上啟下的知識點,自然會是中考的命題熱點。中考數學對於解直角三角形的應用考查,主要是涉及仰角、俯角、方位角、坡度等重要知識點,今天我們選擇幾道典型中考試題進行分析和研究,希望能幫助大家學會分析此類題型,掌握相關的解題規律。縱觀全國各地的中考數學試題,解直角三角形的主要題型有:選擇題、填空題、解答題,覆蓋面較廣,而其中解答題的主要考點是在解直角三角形的應用。
  • 2021年中考數學幾何知識點:幾種常見幾何體的截面
    中考網整理了關於2021年中考數學幾何知識點:幾種常見幾何體的截面,希望對同學們有所幫助,僅供參考。   幾種常見幾何體的截面:   ①正方體的截面有:   三角形,等腰三角形,等邊三角形;   正方形,長方形,平行四邊形,菱形,梯形   五邊形,六邊形   ②圓柱的截面:   圓,橢圓,長方形,不規則圖形;   ③圓錐的截面:   圓,橢圓
  • 2021年中考數學知識點:圓的方程
    中考網整理了關於2021年中考數學知識點:圓的方程,希望對同學們有所幫助,僅供參考。   圓的方程:   1、圓的標準方程:在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是   (x-a)2+(y-b)2=r2。