電源工程師必看:最牛運放應用分析

2021-01-09 電子產品世界

  引言

本文引用地址:http://www.eepw.com.cn/article/201706/361043.htm

  我們經常看到很多非常經典的運算放大器應用圖集,但是這些應用都建立在雙電源的基礎上,很多時候,電路的設計者必須用單電源供電,但是他們不知道該如何將雙電源的電路轉換成單電源電路。

  在設計單電源電路時需要比雙電源電路更加小心,設計者必須要完全理解這篇文章中所述的內容。

  1.1 電源供電和單電源供電

  所有的運算放大器都有兩個電源引腳,一般在資料中,它們的標識是VCC+和VCC-,但是有些時候它們的標識是VCC+和GND。這是因為有些數據手冊的作者企圖將這種標識的差異作為單電源運放和雙電源運放的區別。但是,這並不是說他們就一定要那樣使用――他們可能可以工作在其他的電壓下。在運放不是按默認電壓供電的時候,需要參考運放的數據手冊,特別是絕對最大供電電壓和電壓擺動說明。

  絕大多數的模擬電路設計者都知道怎麼在雙電源電壓的條件下使用運算放大器,比如圖一左邊的那個電路,一個雙電源是由一個正電源和一個相等電壓的負電源組成。一般是正負15V,正負12V和正負5V也是經常使用的。輸入電壓和輸出電壓都是參考地給出的,還包括正負電壓的擺動幅度極限Vom以及最大輸出擺幅。

  單電源供電的電路(圖一中右)運放的電源腳連接到正電源和地。正電源引腳接到VCC+,地或者VCC-引腳連接到GND。將正電壓分成一半後的電壓作為虛地接到運放的輸入引腳上,這時運放的輸出電壓也是該虛地電壓,運放的輸出電壓以虛地為中心,擺幅在Vom 之內。有一些新的運放有兩個不同的最高輸出電壓和最低輸出電壓。這種運放的數據手冊中會特別分別指明Voh 和Vol 。需要特別注意的是有不少的設計者會很隨意的用虛地來參考輸入電壓和輸出電壓,但在大部分應用中,輸入和輸出是參考電源地的,所以設計者必須在輸入和輸出的地方加入隔直電容,用來隔離虛地和地之間的直流電壓。(參見1.3節)

  通常單電源供電的電壓一般是5V,這時運放的輸出電壓擺幅會更低。另外現在運放的供電電壓也可以是3V 也或者會更低。出於這個原因在單電源供電的電路中使用的運放基本上都是Rail-To-Rail 的運放,這樣就消除了丟失的動態範圍。需要特別指出的是輸入和輸出不一定都能夠承受Rail-To-Rail 的電壓。雖然器件被指明是軌至軌(Rail-To-Rail)的,如果運放的輸出或者輸入不支持軌至軌,接近輸入或者接近輸出電壓極限的電壓可能會使運放的功能退化,所以需要仔細的參考數據手冊是否輸入和輸出是否都是軌至軌。這樣才能保證系統的功能不會退化,這是設計者的義務。

  1. 2 虛地

  單電源工作的運放需要外部提供一個虛地,通常情況下,這個電壓是VCC/2,圖二的電路可以用來產生VCC/2的電壓,但是他會降低系統的低頻特性。

  R1 和R2 是等值的,通過電源允許的消耗和允許的噪聲來選擇,電容C1 是一個低通濾波器,用來減少從電源上傳來的噪聲。在有些應用中可以忽略緩衝運放。

  在下文中,有一些電路的虛地必須要由兩個電阻產生,但是其實這並不是完美的方法。在這些例子中,電阻值都大於100K,當這種情況發生時,電路圖中均有註明。

  1. 3 交流耦合

  虛地是大於電源地的直流電平,這是一個小的、局部的地電平,這樣就產生了一個電勢問題:輸入和輸出電壓一般都是參考電源地的,如果直接將信號源的輸出接到運放的輸入端,這將會產生不可接受的直流偏移。如果發生這樣的事情,運放將不能正確的響應輸入電壓,因為這將使信號超出運放允許的輸入或者輸出範圍。

  解決這個問題的方法將信號源和運放之間用交流耦合。使用這種方法,輸入和輸出器件就都可以參考系統地,並且運放電路可以參考虛地。當不止一個運放被使用時,如果碰到以下條件級間的耦合電容就不是一定要使用:第一級運放的參考地是虛地第二級運放的參考第也是虛地這兩級運放的每一級都沒有增益。任何直流偏置在任何一級中都將被乘以增益,並且可能使得電路超出它的正常工作電壓範圍。

  如果有任何疑問,裝配一臺有耦合電容的原型,然後每次取走其中的一個,觀察電工作是否正常。除非輸入和輸出都是參考虛地的,否則這裡就必須要有耦合電容來隔離信號源和運放輸入以及運放輸出和負載。一個好的解決辦法是斷開輸入和輸出,然後在所有運放的兩個輸入腳和運放的輸出腳上檢查直流電壓。所有的電壓都必須非常接近虛地的電壓,如果不是,前級的輸出就就必須要用電容做隔離。(或者電路有問題)

  1. 4 組合運放電路

  在一些應用中,組合運放可以用來節省成本和板上的空間,但是不可避免的引起相互之間的耦合,可以影響到濾波、直流偏置、噪聲和其他電路特性。設計者通常從獨立的功能原型開始設計,比如放大、直流偏置、濾波等等。在對每個單元模塊進行校驗後將他們聯合起來。除非特別說明,否則本文中的所有濾波器單元的增益都是 1。

  1. 5 選擇電阻和電容的值

  每一個剛開始做模擬設計的人都想知道如何選擇元件的參數。電阻是應該用1 歐的還是應該用1 兆歐的?一般的來說普通的應用中阻值在K 歐級到100K 歐級是比較合適的。高速的應用中阻值在100 歐級到1K 歐級,但他們會增大電源的消耗。便攜設計中阻值在1 兆級到10 兆歐級,但是他們將增大系統的噪聲。用來選擇調整電路參數的電阻電容值的基本方程在每張圖中都已經給出。如果做濾波器,電阻的精度要選擇1% E -96系列(參看附錄A)。一但電阻值的數量級確定了,選擇標準的E-12系列電容。

  用E-24系列電容用來做參數的調整,但是應該儘量不用。用來做電路參數調整的電容不應該用5%的,應該用1%。

  2.1 放大

  放大電路有兩個基本類型:同相放大器和反相放大器。他們的交流耦合版本如圖三所示。對於交流電路,反向的意思是相角被移動180度。這種電路採用了耦合電容 ――Cin 。Cin被用來阻止電路產生直流放大,這樣電路就只會對交流產生放大作用。如果在直流電路中,Cin被省略,那麼就必須對直流放大進行計算。

  在高頻電路中,不要違反運放的帶寬限制,這是非常重要的。實際應用中,一級放大電路的增益通常是100倍(40dB),再高的放大倍數將引起電路的振蕩,除非在布板的時候就非常注意。如果要得到一個放大倍數比較的大放大器,用兩個等增益的運放或者多個等增益運放比用一個運放的效果要好的多。

  2.2 衰減

  傳統的用運算放大器組成的反相衰減器如圖四所示。

  在電路中R2要小於R1。這種方法是不被推薦的,因為很多運放是不適宜工作在放大倍數小於1倍的情況下。正確的方法是用圖五的電路。

  在表一中的一套規格化的R3 的阻值可以用作產生不同等級的衰減。對於表中沒有的阻值,可以用以下的公式計算

  R3=(Vo/Vin)/(2-2(Vo/Vin))

  如果表中有值,按以下方法處理:

  為Rf和Rin在1K到100K之間選擇一個值,該值作為基礎值。

  將Rin 除以二得到RinA 和RinB。

  將基礎值分別乘以1 或者2 就得到了Rf、Rin1 和Rin2,如圖五中所示。

  在表中給R3 選擇一個合適的比例因子,然後將他乘以基礎值。

  比如,如果Rf是20K,RinA和RinB都是10K,那麼用12.1K的電阻就可以得到-3dB的衰減。

  圖六中同相的衰減器可以用作電壓衰減和同相緩衝器使用。

  2.3 加法器

  圖七是一個反相加法器,他是一個基本的音頻混合器。但是該電路的很少用於真正的音頻混合器。因為這會逼近運放的工作極限,實際上我們推薦用提高電源電壓的辦法來提高動態範圍。

  同相加法器是可以實現的,但是是不被推薦的。因為信號源的阻抗將會影響電路的增益。

  2.4 減法器

  就像加法器一樣,圖八是一個減法器。一個通常的應用就是用於去除立體聲磁帶中的原唱而留下伴音(在錄製時兩通道中的原唱電平是一樣的,但是伴音是略有不同的)。

  2.5 模擬電感

  圖九的電路是一個對電容進行反向操作的電路,它用來模擬電感。電感會抵制電流的變化,所以當一個直流電平加到電感上時電流的上升是一個緩慢的過程,並且電感中電阻上的壓降就顯得尤為重要。

  電感會更加容易的讓低頻通過它,它的特性正好和電容相反,一個理想的電感是沒有電阻的,它可以讓直流電沒有任何限制的通過,對頻率是無窮大的信號有無窮大的阻抗。

  如果直流電壓突然通過電阻R1 加到運放的反相輸入端上的時候,運放的輸出將不會有任何的變化,因為這個電壓同過電容C1 也同樣加到了正相輸出端上,運放的輸出端表現出了很高的阻抗,就像一個真正的電感一樣。

  隨著電容C1 不斷的通過電阻R2 進行充電,R2上電壓不斷下降,運放通過電阻R1汲取電流。隨著電容不斷的充電,最後運放的兩個輸入腳和輸出腳上的電壓最終趨向於虛地(Vcc/2)。

  當電容C1 完全被充滿時,電阻R1 限制了流過的電流,這就表現出一個串連在電感中電阻。這個串連的電阻就限制了電感的Q 值。真正電感的直流電阻一般會比模擬的電感小的多。這有一些模擬電感的限制:

  電感的一段連接在虛地上;

  模擬電感的Q值無法做的很高,取決於串連的電阻R1;

  模擬電感並不像真正的電感一樣可以儲存能量,真正的電感由於磁場的作用可以引起很高的反相尖峰電壓,但是模擬電感的電壓受限於運放輸出電壓的擺幅,所以響應的脈衝受限於電壓的擺幅。

  2.6 儀用放大器

  儀用放大器用於需要對小電平信號直流信號進行放大的場合,他是由減法器拓撲而來的。儀用放大器利用了同相輸入端高阻抗的優勢。基本的儀用放大器如圖十所示。

  這個電路是基本的儀用放大電路,其他的儀用放大器也如圖中所示,這裡的輸入端也使用了單電源供電。這個電路實際上是一個單電源的應變儀。這個電路的缺點是需要完全相等的電阻,否則這個電路的共模抑制比將會很低。

  圖十中的電路可以簡單的去掉三個電阻,就像圖十一中的電路。

  這個電路的增益非常好計算。但是這個電路也有一個缺點:那就是電路中的兩個電阻必須一起更換,而且他們必須是等值的。另外還有一個缺點,第一級的運放沒有產生任何有用的增益。

  另外用兩個運放也可以組成儀用放大器,就像圖十二所示。

  但是這個儀用放大器是不被推薦的,因為第一個運放的放大倍數小於一,所以他可能是不穩定的,而且Vin -上的信號要花費比Vin +上的信號更多的時間才能到達輸出端。

  這節非常深入地介紹了用運放組成的有源濾波器。在很多情況中,為了阻擋由於虛地引起的直流電平,在運放的輸入端串入了電容。這個電容實際上是一個高通濾波器,在某種意義上說,像這樣的單電源運放電路都有這樣的電容。設計者必須確定這個電容的容量必須要比電路中的其他電容器的容量大100 倍以上。這樣才可以保證電路的幅頻特性不會受到這個輸入電容的影響。如果這個濾波器同時還有放大作用,這個電容的容量最好是電路中其他電容容量的1000 倍以上。如果輸入的信號早就包含了VCC/2 的直流偏置,這個電容就可以省略。

  這些電路的輸出都包含了VCC/2 的直流偏置,如果電路是最後一級,那麼就必須串入輸出電容。

  這裡有一個有關濾波器設計的協定,這裡的濾波器均採用單電源供電的運放組成。濾波器的實現很簡單,但是以下幾點設計者必須注意:

  1. 濾波器的拐點(中心)頻率

  2. 濾波器電路的增益

  3. 帶通濾波器和帶阻濾波器的的Q值

  4. 低通和高通濾波器的類型(Butterworth 、Chebyshev、Bessell)

  不幸的是要得到一個完全理想的濾波器是無法用一個運放組成的。即使可能,由於各個元件之間的負雜互感而導致設計者要用非常複雜的計算才能完成濾波器的設計。通常對波形的控制要求越複雜就意味者需要更多的運放,這將根據設計者可以接受的最大畸變來決定。或者可以通過幾次實驗而最終確定下來。如果設計者希望用最少的元件來實現濾波器,那麼就別無選擇,只能使用傳統的濾波器,通過計算就可以得到了。

相關焦點

  • 運放參數解釋及經常使用運放選型
    、共模抑制比、電源電壓抑制比、輸出峰-峰值電壓、最大共模輸入電壓、最大差模輸入電壓。運放的輸出峰-峰值電壓與負載有關,負載不同,輸出峰-峰值電壓也不同;運放的正負輸出電壓擺幅不一定同樣。 對於實際應用,輸出峰- 峰值電壓越接近電源電壓越好,這樣可以簡化電源設計。 可是如今的滿幅輸出運放僅僅能工作在低壓。並且成本較高。
  • 運放加偏置電壓電路圖分析
    他們的共同特點是輸出幅值不能擺動到電源電壓的上下限,因此限制了輸出電路的動態響應範圍;另一類是以TLV2472等為代表的(軌對軌)單電源運放,LM358運放,但討論的結果同樣實用於性能優越的單電源運放。   單電源運放不僅可以單電源供電,而且也可以雙電源供電。如果採用雙電源供電,單電源運放就失去了他的優勢,從而與普通的雙電源運放在使用上沒有太大的區別。
  • 實圖分析運放7大經典電路
    運放的基本分析方法:虛斷,虛短。對於不熟悉的運放應用電路,就使用該基本分析方法。運放是用途廣泛的器件,接入適當的反饋網絡,可用作精密的交流和直流放大器、有源濾波器、振蕩器及電壓比較器。1運放在有源濾波中的應用上圖是典型的有源濾波電路(賽倫-凱 電路,是巴特沃茲電路的一種)。
  • 詳解運放七大應用電路設計(附技術要點)
    (點擊上方紅字,即可獲取)運放的基本分析方法:虛斷,虛短。對於不熟悉的運放應用電路,就使用該基本分析方法。運放是用途廣泛的器件,接入適當的反饋網絡,可用作精密的交流和直流放大器、有源濾波器、振蕩器及電壓比較器。
  • 集成運放的線性應用
    打開APP 集成運放的線性應用 姚遠香 發表於 2018-08-22 17:42:35
  • 線性電源(LDO)原理性分析總結
    >源電源看這裡電源界第一大公眾平臺18000+電源工程師關注【新朋友】點擊標題下面藍字「電源研發精英圈」快速關注【老朋友】點擊右上角按鈕,將本文分享到您的朋友圈電源研發精英圈技術交流群(新):415291060開關電源視頻教程購買請加小編微信號:gcj5055查看電源工程師各地工資水平,請關注本公眾號然後回覆:工資
  • 運放32個經典應用電路!
    我們經常看到很多非常經典的運算放大器應用圖集,但是他們都建立在雙電源的基礎上,很多時候,電路的設計者必須用單電源供電,但是他們不知道該如何將雙電源的電路轉換成單電源電路
  • 運放opa2604真假辨別
    公司為高性能音頻系統設計的專用運放,具有超低諧波失真、低噪聲、高增益帶寬等特點,一般應用在頻譜分析儀,有源濾波器等。 雙路FET輸入為OPA2604提供了更寬的動態範圍,並且音質與雙極型運放(雙極型會產生更多的奇次諧波失真,而一般認為,偶次諧波失真比較討好耳朵,如電子管的音質)相比更加耐聽。一般應用在專業音響設備、PCM DAC系統的I/V轉換、頻譜分析儀、有源濾波器、傳感器換能、數據採集等系統中。可以直接替代音頻系統中的通用型運放,如4558,5532等。
  • 集成運放MC4558內部電路分析
    從本質上講,集成運放是一種高性能直接耦合放大電路,雖然內部結構各不相同,但是它們的基本組成部分、結構形式、組成原則基本一致,幾無例外的是輸入級均採用差動放大器。MC4558是應用最為廣泛的通用型8腳集成運放,常見封裝形式為SOP8(貼片)和雙列直插(DIP8)兩種,如圖1所示。
  • 炫技,大牛教你設計一個超級運放電路!
    想像一下,剛剛應用了電源,並且振幅顯著幅度還沒有開始。通過100k電阻提供正阻尼反饋,而通過並聯路徑的負阻尼反饋由完全導通的JFET暫時靜音(JFET的柵極電源電位當前為0V)。作為正阻尼的結果,振蕩開始並且振蕩的幅度增長,FET的負直流柵極電位是通過對振蕩器輸出信號進行半波整流和濾波而產生的。
  • 工程師必知:運放LM358組成的24個經典電路!
    引言LM358內部包括有2個獨立的、高增益、內部頻率補償的雙運算放大器, 適合於電源電壓範圍很寬的單電源使用,也適用於雙電源工作模式,在推薦的工作條件下,電源電流與電源電壓無關。它的使用範圍包括傳感放大器、直流增益模組,音頻放大器、工業控制、DC增益部件和其他所有可用單電源供電的使用運算放大器的場合。
  • lt1028運放好不好?哪個可以代替lt1028運放?
    因此,即使在非常低源阻抗換能器或音頻放大器應用中,LT1028 / LT1128 對於總體系統噪聲的影響也將可以忽略不計。   LT1028應用領域:   低噪聲頻率合成器   高質量音頻   紅外探測器   加速度計和陀螺儀放大器   350Ω 橋接信號調理   磁性搜索線圈放大器   水聽器放大器   哪個可以代替lt1028運放?
  • 史上最全運放運算放大器知識講解
    原標題:史上最全運放運算放大器知識講解 調節和放大模擬信號,它是用途十分廣泛的器件,接入適當的反饋網絡,可用作精密的交流和直流放大器、有源濾波器濾波器的供應商、振蕩器振蕩器的供應商及電壓比較器比較器 的供應商。
  • 電源工程師基礎知識及必備技能詳解
    先說說做開關電源需要具備的理論基礎:我們做電源的工程師,分兩類,一類是搞研究的,一類是搞工程的。所謂搞研究的,就是研究各種新的技術、新材料、新工藝、新的拓撲結構等等。這些人需要很高的理論底子,當然必須是高學歷,數學、電磁學、電子學、自動控制等等,各種專業,各種牛逼。有一種就是我們最常見的電源工程師,就是在公司開發部做項目的電子工程師。
  • 研發前線工程師開關電源設計感悟!
    先說說做開關電源需要具備的理論基礎:我們做電源的工程師,分兩類,一類是搞研究的,一類是搞工程的。  所謂搞研究的,就是研究各種新的技術、新材料、新工藝、新的拓撲結構等等。這些人需要很高的理論底子,當然必須是高學歷,數學、電磁學、電子學、自動控制等等,各種專業,各種牛逼。  還有一種就是我們最常見的電源工程師,就是在公司開發部做項目的電子工程師。
  • 運放與電壓比較器有什麼不一樣
    打開APP 運放與電壓比較器有什麼不一樣 維庫電子市場網 發表於 2019-10-03 09:59:00 運放我們常用來放大微弱的電壓信號
  • 運算放大器通俗講解 運放LM358進入鉗位狀態的原理與問題避免辦法
    ,絕大多數工程師都會避免輸入信號的電壓超過規格書規定的範圍,但是,由於上電順序的影響,運放很容易出現被測量信號比電源信號早上電的情況,從而導致晶片超規格使用從而進入鉗位狀態。,這是因為在整個過程中晶片的輸入電壓都沒有超過電源電壓,從而符合規格書的應用範圍。
  • 電流源設計小Tips(一):如何選擇合適的運放
    對於工程師來說,電流源是個不可或缺的儀器,也有很多人想做一個合用的電流源,而應用開源套件,就只是用一整套的PCB,元件,程序等成套產品,參與者只需要將套件的東西焊接好,調試一下就可以了,這裡面的技術含量能有多高,而我們能從中學到的技術又能有多少呢?本文只是從講述原理出發,指導大家做個人人能掌控的電流源。
  • 關於運放的參數和選擇
    溫度感應和張力測量電路便是利用精密放大器的應用實例。  低輸入偏置電流有時是必需的。光接收系統中的放大器就必須具有低偏置電壓和低輸入偏置電流。比如光電二極體的暗電流電流為pA量級,所以放大器必須具有更小的輸入偏置電流。CMOS和JFET輸入放大器是目前可用的具有最小輸入偏置電流的運算放大器。  因為我現在用的是光電池做採集的系統,所以在使用中重點關心了偏置電壓和電流。
  • 史上最全運放運算放大器知識講解(附主流廠商)
    低功耗型運算放大器:由於電子電路集成化的最大優點是能使複雜電路小型輕便,所以隨著可攜式儀器應用範圍的擴大,必須使用低電源電壓供電、低功率消耗的運算放大器相適用。 高壓大功率型運算放大器:運算放大器的輸出電壓主要受供電電源的限制。