晶體三極體放大電路的非線形失真及其解決辦法

2021-01-08 電子產品世界

  晶體三極體在現代電路中有著廣泛的應用,其主要功能是放大功能和開關功能,本文主要針對三極體的放大功能進行分析,重點介紹了電晶體在放大電路中出現的非線形失真的原因進行了深入的分析,最後給出了非線形失真的原因極其解決辦法。

本文引用地址:http://www.eepw.com.cn/article/201702/343842.htm

 

  1三極體的非線形失真

  當我們用三極體對信號進行放大的時候,目的是對信號有一定比例地放大,如果不能按比例放大,放大後的信號與原信號相比就改變了性質,這種現象我們稱之為信號失真,而這種失真是由於對原信號進行非線形放大而產生的,我們稱為非線形失真。

  2非線形失真產生的原因及分類

  2.1截止失真現在以NPN型三極體為例說明晶體三極體的工作原理及失真原因的分析,三極體的結構和符號

  三極體的發射節相當於一個二極體,而二極體具有單向導電性,其所加電壓與通過電流與二極體的伏安特性相同。

  只有加到發射節上的電壓高與uon(開啟電壓)時,發射節才有電流通過,而當發射節被加反向電壓時(只要不超過其反向擊穿電壓),只有很小的反向電流通過,我們認為這種情況下三極體處於截止狀態,而在實際應用中,我們會遇到各種各樣的信號需要放大,有較強的信號,有較弱的信號,也有反向的信號,根據PN節的特性,當加到發射節上的信號為較弱的信號(小於開啟電壓),或者是反向信號時,發射節是截止的,三極體是不能起到放大的作用,輸出的信號,也出現嚴重的失真,此時的失真,稱為截止失真。

  2.2飽和失真在了解三極體的飽失真前,我們先了解一下三極體的飽和導通,我們知道,當三極體的的發射節被加正向電壓且Ubeuon,三極體的發射節有電流通過,以NPN三極體為例,三極體的工作過程是這樣的:當發射節加正向電壓時,發射區通過擴散運動向基區發射電子,形成發射極電流IE;其中一小部分與基區的空穴複合,形成基極電流IB,又由於集電極加反向電壓,所以從發射極出來的大部分電子在集電極電壓作用下通過漂移運動到達集電極,形成集電極電流IC。當集電極上加不同電壓時,有三種情況:

  2.2.1集電節加反向電壓,集電節反偏,此時,集電極有能力收集從發射極發射出的電子,三極體處於穩定的放大狀態。

  2.2.2當集電極加正向電壓,集電極正偏,此時,發射極發射電子由於而集電極收集電子不足,即使基極電流增大,發射極發射電子電流增大,由於集電極收集電子不足,集電極電流也不會增大,這種情況稱為三極體的飽和導通,如圖5所示的飽和區。飽和導通時,三極體對信號也失去了發放大作用,此時的三極體的失真稱為飽和失真。


相關焦點

  • 晶體三極體之共發集電極放大電路
    線性穩壓電源共集電極放大電路在線性穩壓電路中的應共集電極放大電路:信號從晶體三極體的基極輸入,從發射極輸出,集電極為公共端的電路,由於發射極輸出與基極輸入信號相同,故又稱作射極跟隨器。共集電極放大電路的特性:1.信號無放大。輸出信號幅度與輸入信號幅度的比值為:1:1。2.輸出信號與輸入信號同相。3.輸入阻抗。為分壓電阻的並聯值與基極和發射極體電阻乘以1加直流增益倍後的和。
  • 基於Multisim的三極體放大電路仿真分析
    0 引言本文引用地址:http://www.eepw.com.cn/article/175239.htm放大電路是構成各種功能模擬電路的基本電路,能實現對模擬信號最基本的處理--放大,因此掌握基本的放大電路的分析對電子電路的學習起著至關重要的作用。三極體放大電路是含有半導體器件三極體的放大電路,是構成各種實用放大電路的基礎電路,是《模擬電子技術》課程中的重點內容。
  • 晶體三極體之共基極放大電路
    共基極放大電路圖NPN與PNP三極體的結構與表示共基極放大電路:信號從發射極輸入,從集電極輸出,基極為公共端,交流接地。共基極放大電路的特性:1.輸入阻抗。輸入阻抗等於發射極電阻。輸入阻抗小,故高頻特性好。2.輸出阻抗。輸出阻抗等於負載電阻與集電極電阻的並聯值。3.交流放大倍數大。一般為100倍左右。
  • 三極體放大電路的應用
    三極體的放大作用用途很廣,譬如可以將話筒輸出的微弱音頻信號放大後驅動喇叭工作,可以將紅外遙控信號放大後驅動風扇電機工作。      基本的單管放大器。   上圖是一個三極體構成的單管放大電路,Rb是三極體的基極偏置電阻,其作用是給三極體提供一個合適的直流偏壓,使三極體能夠正常放大信號。
  • 三極體的應用——放大電路設計
    引言很多人看完模電書上的三極體放大電路原理後,了解到三極體是怎麼「放大」電流的,但是讓他自己設計一款合適的放大電路,基本上是沒有思路,不知道從哪裡下手。今天,我就帶領大家來學習一下如何用三極體設計放大電路,本文以共設放大電路為例進行講解。
  • 振蕩電路的工作原理及其特性,附設計集錦
    選頻網絡若由R、C元件組成,稱RC正弦波振蕩電路;若由L、C元件組成,則稱LC正弦波振蕩電路;若用石英晶體組成,則稱石英晶體振蕩電路。穩幅電路的作用是穩定振蕩信號的振幅,它可以採用熱敏元件或其他限幅電路,也可以利用放大電路自身元件的非線性來完成。為了更好地獲得穩定的等幅振蕩,有時還需引入負反饋網絡。
  • PNP三極體和NPN三極體開關電路
    三極體,全稱應為半導體三極體,也稱雙極型電晶體、晶體三極體,是一種電流控制電流的半導體器件·其作用是把微弱信號放大成幅度值較大的電信號
  • s9013三極體封裝及參數介紹 淺析s9013三極體電路應用
    S9013三極體是一種NPN型三極體,以矽為主要材料,屬於小型的功率三極體,這種三極體在電路中隨處可見,那麼關於你了解多少呢? 9013三極體 s9014,s9013,s9015,s9012,s9018系列的晶體小功率三極體,把顯示文字平面朝自己,從左向右依次為e發射極 b基極 c集電極;對於中小功率塑料三極體按圖使其平面朝向自己,三個引腳朝下放置,則從左到右依次為e b c,s8050,8550,C2078 也是和這個一樣的。
  • 各种放大器電路之功率放大器的分析
    功率放大器主要是考慮如何獲得最大的輸出功率、最小的失真和最高的效率。 由於變壓器耦合損耗小,又能變換阻抗,使負載和電晶體相匹配,所以功率放大器廣泛採用變壓器耦合電路。音頻功率放大器可以根據不同的要求,採用甲類放大器、乙類放大器和甲乙類放大器。這種功率放大器是在甲類工作狀態下運用的,電晶體在輸入信號的整個周期內都有放大作用。 C是耦合電容。R1、R2是上下偏置電阻。
  • 高頻放大器的故障分析以及影像失真的原因
    今天我們就挑出兩個例子來展開說一下,你知道高頻放大器的故障有哪些嗎?影像失真又有哪些情況呢? 先說高頻放大器的故障。暫且分為三點來介紹。第一點是屏壓不正常。當柵地級無屏極電壓時,故障現象就是我們剛才提到過的無聲影。如果B+電源電壓正常,則故障原因多半是屏極電路去耦電阻斷路、屏極線圈開焊或與彈簧片接觸不良。
  • PNP 和NPN型三極體,放大電路工作原理,類似水龍頭?
    一、了解三極體三極體:是三個引腳的放大器件的統稱;全稱為半導體三極體,也稱雙極型電晶體、晶體三極體等;是電子電路的核心元件,具有電流放大作用,可通過放大微弱電信號;因此常被用作無觸點開關。原理通水龍頭,以小栓紐控制大水流一樣;四、三極體的主要用途:1.用於模擬電路中,作電壓或電流放大。2.用於高頻電路中,作調製、解調或自激振蕩。
  • 三個最簡單的三極體放大電路
    (點擊上方紅字,即可獲取)一、最簡單的電路BC547三極體極性:字面朝上,左→右 C、B、E由於一隻電晶體的放大倍數有限,想讓LED發光更明亮,或許你需要用點力兩隻手分別捏住兩個點。你的身體相當於一個電阻,電流流過你的身體(手指)給三極體基極提供一個偏置電流。電晶體將流過你手指的電流放大約200倍,這足以點亮LED。
  • 三極體基本知識及電子電路圖詳解
    "晶體三極體,是半導體基本元器件之一,具有電流放大作用,是電子電路的核心元件" 在電子元件家族中,三極體屬於半導體主動元件中的分立元件。 三極體的發明 晶體三極體出現之前是真空電子三極體在電子電路中以放大、開關功能控制電流。
  • D類功率放大器電路設計與調試
    2.3 驅動電路以及互補對稱輸出和低通濾波電路   如圖4所示。將PWM信號整形變換成互補對稱的輸出驅動信號,用CD40106施密特觸發器並聯運用以獲得較大的電流輸出,送給由晶體三極體組成的互補對稱式射極跟隨器驅動的輸出管,保證了快速驅動。驅動電路晶體三極體選用9012和9014對管。
  • 如何用公式去求三極體放大電路的放大倍數
    打開APP 如何用公式去求三極體放大電路的放大倍數 發表於 2019-07-09 17:28:26 三極體的三種組態放大電路放大倍數的計算方法,三種基本組態,分別是共射放大電路,共基放大電路和共集放大電路。
  • 三極體各參數如何選取問題(共射極放大電路)
    本文引用地址:http://www.eepw.com.cn/article/201612/341248.htm  以下截取自裡面部分章節,如何計算共射極放大電路的各個參數。很實用。  1.Vcq為集電極的靜態工作電壓,Vcq的選取為了避免出現飽和和截止失真,使Vcq ≈ 1/2 * Vcc,Rc = 10Re;  圖1為基極分壓式共射極放大電路的直流通路
  • 晶片核心元件晶體三極體是怎樣放大信號的?水龍頭:看我啦
    ,現在屬於晶體三極體的天下。晶體三極體被譽為20世紀最重要的發明,其重要性堪比原子彈,肖克利等三人因此獲得1956年諾貝爾物理學獎。從後來的發展情況看,晶體三極體已經成為晶片的核心元件,而晶片又是現代信息社會的基石,足見諾貝爾物理學獎沒有頒錯人。晶體三極體的一個重要作用是能放大信號,那麼,它是如何做到的呢?
  • 三種常用的三極體開關電路總結
    ,掌握了三極體開關電路的相關設計知識,對於日後的產品設計和研發調試都有很大的幫助。在今天的文章中,小編為大家總結了三種常用的三極體開關電路圖,下面就讓我們一起來看看吧。 靈敏光控三極體開關電路 圖1 上圖中,圖1所展示的是一種常見的三極體開關電路,這一電路也被稱為靈敏光控光敏電路。這一電路系統在設計時主要採用了達林頓型光敏三極體作敏感元件,所以對弱光較敏感。
  • 放大電路的輸出最大不失真幅度與靜態工作點設置估算值的設置方法
    以共發射極放大電路為研究背景,在電路參數和負載電阻已經確定、並且深入分析T/J,信號放大電路的基礎上,利用放大電路輸出特性曲線,得到了放大電路輸出最大不失真幅度與靜態工作點設置估算值。以上結果對放大電路的設計、使用、調試均具有較大幫助,具備較好的實際應用價值。
  • 三極體開關電路簡單應用介紹
    1、三極體簡單介紹三極體我們有時候也稱為電晶體、晶體三極體等,它是一種電流控制元器件